

Disease-Modifying Therapies for Relapsing-Remitting and Primary-Progressive Multiple Sclerosis: Effectiveness and Value

Evidence Report

January 26, 2017

Prepared for

ICER Staff and Consultants	University of Washington School of Pharmacy
	Modeling Group
Jeffrey A. Tice, MD	Marita Zimmermann, MPH, PhD
Professor of Medicine	Research Fellow
University of California, San Francisco	Pharmaceutical Outcomes Research and Policy
	Program, Department of Pharmacy
Rick Chapman, PhD, MS	University of Washington
Director of Health Economics	
Institute for Clinical and Economic Review	Elizabeth Brouwer, MPH
	Graduate Student
Varun Kumar, MBBS, MPH, MSc	Pharmaceutical Outcomes Research and Policy
Health Economist	Program, Department of Pharmacy
Institute for Clinical and Economic Review	University of Washington
Anne M. Loos, MA	Josh J. Carlson, PhD, MPH
Senior Research Associate	Associate Professor
Institute for Clinical and Economic Review	Pharmaceutical Outcomes Research and Policy
	Program, Department of Pharmacy
Shanshan Liu, MS, MPH	University of Washington
Research Associate	
Institute for Clinical and Economic Review	
Matt Seidner, BS	
Program Manager	The role of the University of Washington (UW) School of
Institute for Clinical and Economic Review	Pharmacy Modeling Group is limited to the development of the cost-effectiveness model, and the resulting ICER reports do not
Daniel A. Ollendorf, PhD	necessarily represent the views of the UW.
Chief Scientific Officer	
Institute for Clinical and Economic Review	
David Rind, MD	
Chief Medical Officer	
Institute for Clinical and Economic Review	
Steven D. Pearson, MD, MSc	
President	
Institute for Clinical and Economic Review	

DATE OF

PUBLICATION: January 26, 2017

We would also like to thank Margaret Webb for her contributions to this report.

About ICER

The Institute for Clinical and Economic Review (ICER) is an independent non-profit research organization that evaluates medical evidence and convenes public deliberative bodies to help stakeholders interpret and apply evidence to improve patient outcomes and control costs. ICER receives funding from government grants, non-profit foundations, health plans, provider groups, and health industry manufacturers. For a complete list of funders, visit http://www.icer-review.org/about/support/. Through all its work, ICER seeks to help create a future in which collaborative efforts to move evidence into action provide the foundation for a more effective, efficient, and just health care system. More information about ICER is available at http://www.icer-review.org

About CTAF

The California Technology Assessment Forum (CTAF) – a core program of ICER – provides a public venue in which the evidence on the effectiveness and value of health care services can be discussed with the input of all stakeholders. CTAF seeks to help patients, clinicians, insurers, and policymakers interpret and use evidence to improve the quality and value of health care.

The CTAF Panel is an independent committee of medical evidence experts from across California, with a mix of practicing clinicians, methodologists, and leaders in patient engagement and advocacy. All Panel members meet strict conflict of interest guidelines and are convened to discuss the evidence summarized in ICER reports and vote on the comparative clinical effectiveness and value of medical interventions. More information about CTAF is available at https://icer-review.org/programs/ctaf/.

In the development if this report, ICER's researchers consulted with several clinical experts, patients, manufacturers and other stakeholders. The following clinical experts provided input that helped guide the ICER team as we shaped our scope and report. None of these individuals is responsible for the final contents of this report or should be assumed to support any part of this report, which is solely the work of the ICER team and its affiliated researchers.

For a complete list of stakeholders from whom we requested input, please visit: https://icer-review.org/material/ms-stakeholder-list/

Clinical Expert Reviewer

David E. Jones, MDAssistant Professor of Neurology
University of Virginia Health System

Additional Clinical Expert Input

Jeffrey Klingman, MD
Chief of Neurology
Kaiser Permanente Walnut Creek

Annette M. Langer-Gould, MD, PhD

Research Scientist and Regional Physician MS Champion Kaiser Permanente Southern California; MS Specialist Los Angeles Medical Center

Table of Contents

Executive Summary	ES1
1. Background	1
1.1 Introduction	1
2. The Topic in Context	7
3. Summary of Coverage Policies and Clinical Guidelines	16
3.1 Coverage Policies	16
3.2 Clinical Guidelines	20
4. Comparative Clinical Effectiveness	22
4.1 Overview	22
4.2 Methods	23
4.3 Results	26
5. Other Benefits or Disadvantages	56
6. Comparative Value	58
6.1 Overview	58
6.2 Cost-Effectiveness Model: Methods	59
6.3 Cost-Effectiveness Model: Results	71
6.4 Prior Published Evidence on Costs and Cost-Effectiveness of DMTs for MS	78
6.6 Value-based Benchmark Prices	83
6.7 Summary and Comment	84
References	87
Appendix A. Search Strategies and Results	98
Appendix B. Ongoing Studies	102
Appendix C. Comparative Clinical Effectiveness Supplemental Information	114
Appendix D. Network Meta-Analysis Methods and Results	135
Appendix E. Comparative Value Supplemental Information	153
Appendix F. Patient Survey Questions	187

List of Acronyms Used in this Report

AHRQ Agency for Healthcare Research and Quality

BID Twice daily

CDMS Clinically definite multiple sclerosis

CI Confidence interval

CIS Clinically isolated syndrome
CNS Central nervous system
CPI Consumer price index
CrI Credible interval

DMT Disease-modifying therapyDRG Diagnosis related group

EDSS Expanded Disability Status Scale
EQ-5D EuroQol five dimensions questionnaire

FS Functional score
HR Hazard ratio
IM Intramuscular

ITP Immune thrombocytopenic purpura

IV Intravenous

JC virus John Cunningham virus MS Multiple sclerosis

MRI Magnetic resonance imaging

MSFC Multiple Sclerosis Functional Composite

MSIS-29 Multiple Sclerosis Impact Scale
NNT Number needed to treat

OR Odds ratio

PML Progressive multifocal leukoencephalopathy
PPMS Primary-progressive multiple sclerosis

QALY Quality-adjusted life year

QD Once daily

QOD Once every other day

QoL Quality of life

REMS Risk evaluation and mitigation strategy RRMS Relapsing-remitting multiple sclerosis

RR Rate ratio or risk ratio
RRR Relative risk reduction

SC Subcutaneous

SF-12 12-item short form health survey

SPMS Secondary-progressive multiple sclerosis

TIW Three times a week

USPSTF US Preventive Services Task Force

WTP Willingness to Pay

Executive Summary

Background

Multiple sclerosis (MS) is a chronic, immune-mediated inflammatory, neurodegenerative, and demyelinating disease of the central nervous system (CNS).¹ Approximately 400,000 Americans have MS, although this may be an underestimate. The disease affects about three times as many women as men.² Some patient groups, such as African Americans, experience a more rapid and severe clinical course. The annual cost of MS in the United States is estimated to be \$28 billion.³

RRMS

The most common form of MS is relapsing-remitting MS (RRMS), which affects 85% to 90% of patients at presentation.¹ RRMS is characterized by periodic relapses with neurologic symptoms that may diminish or resolve with treatment. Over one to two decades, more than half of untreated patients with RRMS transition to a disease course of slowly accumulating neurologic deficits known as secondary progressive MS (SPMS).⁴

There are more than 10 disease-modifying therapies (DMTs) approved by the Food and Drug Administration (FDA) for the treatment of RRMS. The therapeutic goal of DMTs is to decrease the frequency of relapses and to prevent the disability that accumulates with disease progression over time. Some neurologists believe that the goal of treatment should be to eradicate all evidence of disease activity, including magnetic resonance imaging (MRI) findings. There is controversy about the relative efficacy of the drugs, and several of the newer drugs have been associated with life-threatening adverse events (e.g., CNS infections, autoimmune diseases, liver toxicity, cancers). In addition, RRMS is a heterogeneous disease, which complicates comparisons across studies of DMTs.

PPMS

Approximately 10-15% of MS patients have primary-progressive MS (PPMS), a clinical course that is characterized by steadily worsening neurologic function, largely without remissions.^{5,6} The mean age of onset of PPMS is 10 years older than that of RRMS and patients with PPMS generally experience more severe disability.^{5,6} While RRMS affects around three times as many women as men, PPMS affects both sexes in approximately equal numbers.⁵

On June 27, 2016, the Food and Drug Administration (FDA) announced that it had granted Priority Review Designation to ocrelizumab for use in PPMS, and plans to issue a decision on March 28, 2017.^{7,8} If approved, ocrelizumab would be the first agent with a PPMS indication. Several other agents have been studied for use in PPMS, but one – rituximab – is of particular interest to

practitioners, patients, and insurers because its mechanism of action is similar to that of ocrelizumab, despite its lack of a labeled indication for MS.⁹

The Topic in Context

There is no definitive clinical guideline to help clinicians and patients with decisions about both initial therapy and choices for subsequent therapies following treatment failure. Shared decision-making plays an important role when choosing initial and subsequent therapy, as patients and providers must balance considerations around efficacy, side effects, potential harms, route and frequency of administration, cost, and personal experience. Advocacy organizations have noted that patient preference strongly influences treatment adherence and resultant clinical outcomes. In addition, the advocacy organizations emphasized that some patients have a low tolerance for risk and are less likely to choose DMTs with known, potentially severe side effects. In addition, coverage policies often require patients to attempt treatment with at least one of the interferons or glatiramer acetate (the longest-tenured DMTs on the US market) and that they experience inadequate response prior to covering the newer DMTs because of the extended clinical experience with the older agents and the perception that they are safer and less costly. These combined factors demonstrate the considerable uncertainty about the interpretation and application of the current evidence base to guide clinical practice and insurance coverage policy.

One of the dreaded risks of DMTs for MS is progressive multifocal leukoencephalopathy (PML). PML is caused by an infection by the John Cunningham (JC) virus that attacks the myelin sheaths of nerves in patients with decreased function of the immune system. When PML occurs in MS, approximately 25% of patients die within 6 months and the survivors have increased long-term disability. Other rare, but life-threatening risks of DMTs include autoimmune hepatitis and autoimmune blood disorders. The DMTs that are most effective at slowing the progression of MS tend to have the highest risk for these life-threatening unintended consequences.

Disease-Modifying Therapies for MS

The DMTs for multiple sclerosis that are the focus of this review are summarized in Table 1 below. For RRMS, they are intended to decrease relapses and progressive disability, which are the hallmarks of MS. All DMTs are thought to modulate the immune system to decrease the autoimmune damage that is believed to cause the CNS changes responsible for the symptoms of MS. All the drugs in the Table have an FDA indication for RRMS with the exception of ocrelizumab, which the FDA is expected to approve in March 2017 for both RRMS and PPMS, and rituximab, which is approved for other conditions and is used off-label for RRMS and PPMS. Both ocrelizumab and rituximab are monoclonal antibodies directed against the same protein, CD20, which is expressed on B-lymphocyte.

Table ES1. DMTs of Interest for the Evidence Review

	Abbreviation in			
Drug (Brand name)	Tables/Figures	Class	FDA-Approved Dose	Year 1 WAC
Subcutaneous injectio				
Interferon β-1a	IFN β-1a 30 mcg	Interferon	30 mcg weekly	\$81,965
(Avonex®, Biogen)	p 10 00 og	erreren	oo meg weemy	ψ01,303
Interferon β-1b	IFN β-1b 250	Interferon	250 mcg every other day	\$86,659
(Betaseron®, Bayer)	mcg	meereron	250 mag every ounce day	ψου,σου
(200000:0:: , 20,0:.,	(Betaseron)			
Interferon β-1b	IFN β-1b 250	Interferon	250 mcg every other day	\$72,359
(Extavia®, Novartis)	mcg (Extavia)			, ,
Glatiramer acetate	GA 20 mg	Mixed polymers	20 mg daily	\$86,554
(Copaxone®, Teva)		,ea poryere	20 8 da 7	φοσ,σο :
Glatiramer acetate	GA 40 mg	Mixed polymers	40 mg three times weekly	\$76,024
(Copaxone®, Teva)				,,
Glatiramer acetate	GA 20 mg	Mixed polymers	20 mg daily	\$63,193
(Glatopa®, Sandoz)	(Glatopa)		,	, ,
Interferon β-1a	IFN β-1a 22 mcg	Interferon	22 mcg or 44 mcg three times	\$86,416
(Rebif®, EMD	or 44 mcg		weekly	. ,
Serono)			,	
Peginterferon β-1a	PEG	Interferon	125 mcg every 14 days	\$81,956
(Plegridy®, Biogen)			, ,	
Daclizumab	DAC	Anti-CD25	150 mg once monthly	\$82,000
(Zinbryta®, Biogen		monoclonal		
and AbbVie)		antibody		
Oral	1			
Fingolimod	FIN	Sphingosine 1-	0.5 mg once daily	\$82,043
(Gilenya®, Novartis)		phosphate		
		receptor		
		modulator		
Teriflunomide	TER	Pyrimidine	7 mg or 14 mg daily	\$76,612
(Aubagio®, Sanofi		synthesis		
Genzyme)		inhibitor		
Dimethyl fumarate	DMF	Multifactorial	240 mg twice daily	\$82,977
(Tecfidera®, Biogen)				
Intravenous infusion				
Natalizumab	NAT	Anti α4β1/	300 mg every 4 weeks	\$78,214
(Tysabri®, Biogen)		α4β7 integrin		
		monoclonal		
		antibody		
Alemtuzumab	ALE	Anti-CD52	12 mg per day for 5 days in the	\$103,749
(Lemtrada®, Sanofi		monoclonal	first year, 3 days every subsequent	
Genzyme)		antibody	year	

Drug (Brand name)	Abbreviation in Tables/Figures	Class	FDA-Approved Dose	Year 1 WAC
Ocrelizumab (Ocrevus®, Genentech)	OCR	Anti-CD20 monoclonal antibody	RRMS: 300 mg twice 14 days apart, then 600 mg once every 24 weeks* PPMS: 300 mg twice 14 days apart, cycle begins every 24 weeks*	Unknown
Rituximab (Rituxan®, Genentech)	RIT	Anti-CD20 monoclonal antibody	1000 mg every 6 months*	\$16,704

WAC: wholesale acquisition cost

Insights Gained from Discussions with Patients and Patient Groups

ICER had conversations with individual patients and multiple patient advocacy organizations, including the MS Coalition (which also includes clinical societies), the National MS Society, Accelerated Cure, MS Association of America, and PatientsLikeMe. A full description of the insights gained from these conversations is presented in the full report, but several important themes are summarized below.

- A diagnosis of MS poses many burdens, including economic hardships that are
 underappreciated in most economic analyses of MS. These include lost wages from missed
 work, the need to transition from full- to part-time work, the inability to continue working,
 and the high cost of medications and medical equipment.
- Patients want their provider to be able to choose the medication that is best for them
 without restriction, but feel that their choice of therapy is driven by insurance coverage and
 the willingness of their provider to appeal coverage denials. The high cost of DMTs for MS
 can result in large out-of-pocket costs for individuals who are unaware of, or ineligible for,
 patient-assistance programs offered by manufacturers or non-profit organizations.
- The primary goal for patients is to remain independent, but it must be balanced with the risks for adverse events that are carried by the therapies most likely to keep them independent. These risk-benefit assessments are complicated by the lack of long-term data; many of the studies of DMTs are short term (1-3 years) whereas disability typically accumulates over a much longer time horizon of 10 to 15 years.
- The MS Coalition created an online questionnaire to assess patient perspectives on the
 most important issues for patients when making decisions about which therapy to take. The
 most important factors included how well a DMT delays the onset of disability and prevents
 relapses or new MRI lesions. In addition, the ability to continue working and performing

^{*}Ocrelizumab and rituximab have not been approved by the FDA for use in MS, dosing data from clinical trials was used.

- normal activities, provider recommendation of a therapy, other long-term risks, and the restrictions that their insurer places on access to therapies were also deemed very important.
- Some patients have a strong preference for oral medications over injectable ones because
 of their dislike of needles, injection site reactions, and the difficulty of storing medications
 that require refrigeration. Other patients are equally comfortable with injectable
 medications.^{11,12}

Comparative Clinical Effectiveness

To inform our analysis of the comparative clinical effectiveness of DMTs in the treatment of RRMS and PPMS, we abstracted evidence from available clinical studies of these agents, whether in published or abstract form. There were 33 unique randomized trials with 21,768 patients for the RRMS indication and 2 randomized trials for the PPMS indication. The oldest trial¹³ was published in 1987 and the most recent trial was published in 2017.¹⁴ This evidence was sufficient to perform network meta-analyses (NMA) that combined direct (head-to-head) and indirect evidence for relapse rate and sustained disability progression. There was sparse evidence and no consistent outcome measure for MRI and quality of life outcomes, so NMAs were not performed for these outcomes.

RRMS

Clinical Benefits

Relapse Rate

In our NMA, alemtuzumab, natalizumab, and ocrelizumab had the greatest reduction in ARR (approximately 70% reduction compared to placebo). Fingolimod, daclizumab, rituximab, and dimethyl fumarate were the next most effective (47% to 54% reduction). The interferons, glatiramer acetate 20 mg, and teriflunomide were less effective (17% to 37% reduction). Within these groupings, however, the 95% credible intervals (the Bayesian equivalent of confidence intervals) overlapped, suggesting no material differences within the three sets of drugs, but all of the drugs were significantly better than placebo. A forest plot summarizing the relative risks and 95% credible intervals for each drug compared to placebo is presented below (Figure ES1).

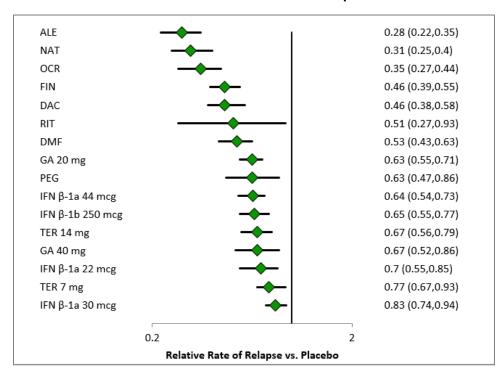


Figure ES1. Forest Plot of DMTs vs. Placebo for Annualized Relapse Rate

Legend: The diamonds represent the point estimate from the NMA for the relative risk of relapse rate for each drug compared to placebo and the horizontal bars represent the 95% credible intervals. Any numbers less than 1 indicate a reduction in the relapse rate compared to placebo.

The forest plot also graphically demonstrates the superiority of alemtuzumab, natalizumab, and ocrelizumab to the other agents. The study of rituximab was underpowered compared to the other studies (much wider credible intervals, greater uncertainty), but the point estimate was similar to that of fingolimod, daclizumab, and dimethyl fumarate. The interferons, glatiramer acetate, and teriflunomide appear to be less effective at reducing relapse rates than the other drugs. Nevertheless, interferon β -1a 30 mcg, which was the least effective drug in the NMA, is still superior to placebo. Comprehensive sensitivity analyses are described in detail in the full report; across these analyses, there were no important changes in the ordering of drugs or the estimated efficacy vs. placebo.

Disability Progression

We identified 27 trials that reported dichotomous results for disability progression (measured by Expanded Disability Status Score [EDSS]), including 16 head-to-head studies (4 of which also had a placebo arm) and an additional 11 placebo-controlled studies, all of which contributed results to the NMA of disability progression. Ideally, studies would measure disability progression over at least five years.¹⁵ Unfortunately, all but two of the studies were two years or less in duration and many

studies did not report the preferred measure: the number of patients with confirmed disability progression sustained for a minimum of 24 weeks.

In our NMA, ocrelizumab and alemtuzumab had the greatest reduction in disability progression (53% to 58% reduction compared to placebo respectively), closely followed by daclizumab (46%) and natalizumab (44%). Dimethyl fumarate, peginterferon β -1a, interferon β -1b 250 mcg, and fingolimod were next (32% to 38%). Teriflunomide, glatiramer acetate, and the remaining interferons were less effective (14% to 28%). Four of the drugs were not significantly better than placebo (interferon β -1a 30 mcg, interferon β -1a 22 mcg, teriflunomide 7 mg, and glatiramer acetate 40 mg; credible interval contains 1.0). In the only trial of glatiramer acetate 40 mg (GALA trial), there was a non-significant trend towards greater disability progression in the glatiramer acetate 40 mg group. It is unlikely that glatiramer acetate 40 mg increases disability progression. Indeed, in the three-year open-label extension of the same GALA trial, there was a trend towards a reduction in disability in the glatiramer acetate 40 mg arm, although this also was not statistically significant (HR 0.76, 95% CI 0.55-1.04, p=0.09). In the only trial of glatiramer although this also was not statistically significant (HR 0.76, 95% CI 0.55-1.04, p=0.09).

A forest plot summarizing the relative risks and 95% credible intervals for each drug compared to placebo is below (Figure ES2). The credible intervals for most of the drugs are quite wide, highlighting the limitations of indirect evidence to distinguish one drug or set of drugs from the others. This also reflects the small number of patients with disability progression due to the relatively short follow-up and small size of most of the trials.

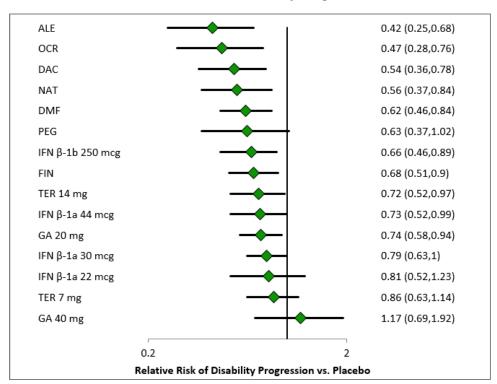


Figure ES2. Forest Plot of DMTs vs. Placebo for Disability Progression

Legend: The diamonds represent the point estimate from the NMA for the relative risk of disability progression for each drug compared to placebo and the horizontal bars represent the 95% credible intervals. Any numbers less than 1 indicate a reduction in disability progression compared to placebo.

Subgroup and sensitivity analyses did not identify any substantial inconsistencies in the network.

MRI Outcomes

MRI findings are used in the diagnosis and management of MS. It is, however, difficult to compare MRI findings across trials because of variability in how MRI measures were performed and reported. We were unable to perform a network meta-analysis on MRI outcomes. MRI outcomes in the key randomized trials are described in the full report.

Quality of Life

Quality of life is worse in patients with MS compared to age- and sex-matched individuals in the general population. ^{18,19} Quality of life correlates with EDSS scores: as EDSS scores increase, quality of life declines. In general, studies of DMTs for MS have focused on reducing relapses and disability progression, not quality of life. The depression, fatigue, musculoskeletal, and urinary symptoms that patients with MS experience are usually managed by other interventions. Treatments for depression in MS include conventional antidepressant medications, cognitive behavioral therapy, and mindfulness. Treatments for fatigue include amantadine, methylphenidate, and modafinil.

Physical therapy, anti-spasticity drugs, medical devices, and botulinum toxin are all employed to help address musculoskeletal and urologic needs. At high-quality MS centers, multidisciplinary teams employ multiple modalities to help improve these outcomes.

The most commonly reported measures were the EQ-5D and the SF-36. Most of the trials reporting SF-36 results found significant improvements in the Physical Component Summary Scale (PCS), but not the Mental Component Summary Scale. The primary quality of life benefit from the DMTs appear to be physical and may reflect changes in level of disability. Even when statistically significant, however, the magnitude of benefit, when found, was small. The few trials that reported fatigue and depression measures did not find consistent improvements with DMTs compared to placebo.

Harms

The harms of the DMTs are summarized in Table ES2. In the randomized trials, specific SAEs were generally uncommon (<1% of treated patients) and not statistically different from the control group, whether active or placebo. For non-serious AEs, flu-like symptoms were more common in patients treated with interferons, injection site reactions were more common for all of the injectable agents, and infusion reactions were more common for the infused agents. Fingolimod has first dose cardiac effects that must be monitored. However, it is the less common, more serious AEs that cause the greatest concerns for both patients and their treating providers.

Table ES2. Harms of DMTs

Drug (Brand name)	Major safety concerns	D/C rates	SAEs
Subcutaneous injections			
Interferon β-1a 30 mcg	Depression, suicide, psychosis, liver toxicity, seizures, allergic	4%	14%
(Avonex)	reactions, CHF, \downarrow peripheral blood counts, thrombotic		
	microangiopathy, flu-like symptoms are common (49%)		
Interferon β-1b 250 mcg	Liver toxicity, allergic reactions, depression, suicide, CHF,	6%	11%
(Betaseron,	injection site necrosis (4%), leukopenia, thrombotic		
Extavia)	microangiopathy, flu-like symptoms are common (57%)		
Glatiramer acetate	Post-injection reaction (16%), transient chest pain (13%),	3%	13%
(Copaxone, Glatopa)	lipoatrophy, skin necrosis, injection site reactions		
Interferon β-1a 22/44 mcg	Depression, suicide, livery injury, allergic reactions, ↓ peripheral	5%	16%
(Rebif)	blood counts, thrombotic microangiopathy, seizures, injection		
	site reactions common (~90%), injection site necrosis (3%), flu-		
	like symptoms are common (59%)		
Peginterferon β-1a	Liver toxicity, depression, suicide, seizures, allergic reactions,	5%	11%
(Plegridy)	CHF, \downarrow peripheral blood counts, thrombotic microangiopathy,		
	flu-like symptoms are common (47%)		

Drug (Brand name)	Major safety concerns	D/C rates	SAEs
Daclizumab	\uparrow risk of infection and skin reactions. Hypersensitivity reactions,	15%	22%
(Zinbryta)	depression, and suicide. Boxed warning: significant hepatic		
	injury (0.7%), autoimmune hepatitis (0.3%), other immune		
	mediated disorders. Serious immune-mediated reactions in 5%		
	of patients. Only available through REMS .*		
Oral agents			
Fingolimod	1 st dose bradycardia, ↑ risk of serious infection, PML, macular	12%	10%
(Gilenya)	edema, PRES, \downarrow respiratory function (\downarrow FEV1), liver toxicity,		
	↑BP, basal cell carcinoma (2%). REMS requirement lifted in late		
	2016.*		
Teriflunomide	Boxed warning for hepatotoxicity (including fatal liver failure)	13%	13%
(Aubagio)	and teratogenicity. \downarrow WBC, \uparrow risk of infection, peripheral		
	neuropathy (1.4 – 1.9%); ↑ BP (3-4%). Hair thinning.		
Dimethyl fumarate	Anaphylaxis, angioedema, PML, ↓ WBC, liver injury, flushing	14%	18%
(Tecfidera)	(40%)		
Intravenous infusions			
Natalizumab	Boxed warning for PML. \uparrow risk for herpes encephalitis and	6%	19%
(Tysabri)	meningitis, liver toxicity, hypersensitivity (including anaphylaxis)		
	reactions, ↑ risk of infection. Only available through REMS. *		
Alemtuzumab	Boxed warning for serious (sometimes fatal) autoimmune	2%	33%
(Lemtrada)	conditions such as ITP, life-threatening infusion reactions, ↑ risk		
	of malignancies.		
	Infusion reactions (92%), rash (53%), lymphopenia (99.9%). Only		
	available through REMS .*		
Ocrelizumab	It is unknown if there will be a Boxed Warning as ocrelizumab is	4%	7%
(Ocrevus)	not yet FDA approved. Risk of infection, possible 个 risk for PML		
	(due to similarity in mechanism to rituximab and ofatumumab) ²⁰		
Rituximab	Boxed warning for fatal infusion reactions within 24 hours of	4%	13%
(Rituxan)	infusion, severe mucocutaneous reactions (including fatalities),		
	HBV reactivation, PML (all for non-MS indications). ↑ risk of		
	infection, 个 risk of cardiac arrhythmia, bowel obstruction,		
	cytopenias		

BP: blood pressure, CHF: congestive heart failure, D/C rates: discontinuation due to adverse events, FEV1: forced expiratory volume in 1 second, HBV: hepatitis B virus, ITP: idiopathic thrombocytopenic purpura, PRES: posterior reversible encephalopathy syndrome, PML: progressive multifocal leukoencephalopathy, WBC: white blood cell count

Because of the risk for serious adverse events, both alemtuzumab and daclizumab's FDA indications state that they "should generally be reserved for patients who have had an inadequate response to two or more drugs indicated for the treatment of MS. Similarly, the FDA indication for natalizumab originally stated "Tysabri is generally recommended for patients who have had an inadequate

^{*}REMS: Risk Evaluation and Mitigation Strategy

response to, or are unable to tolerate, an alternate MS therapy." It now reads "Tysabri increases the risk of PML. When initiating and continuing treatment with Tysabri, physicians should consider whether the expected benefit of Tysabri is sufficient to offset this risk. "

Balancing the benefits and harms is challenging for both patients and their providers, as the more powerful drugs are more effective, but carry with them higher risks for life-threatening complications.

PPMS

Clinical Evidence

There is one placebo controlled trial of ocrelizumab (ORATORIO) and one of rituximab (OLYMPUS). For ocrelizumab, confirmed disability progression sustained for at least 12 weeks, the primary endpoint of the trial, was significantly lower than placebo (HR 0.76, 95% CI 0.59 - 0.98, p=0.032). Confirmed disability progression sustained for at least 24 weeks was also significantly lower (HR 0.75, 95% CI 0.58-0.98, p=0.04), and there was a significant reduction in the T2 lesion volume (p<0.001), faster performance of the 25-foot walk (p=0.04) and a significant improvement in the change in brain volume (p=0.02). There was no excess of adverse events associated with ocrelizumab.

For rituximab, the OLYMPUS trial was a good-quality trial that did not find a significant difference in the time to confirmed disease progression sustained for at least 12 weeks (HR 0.77, p=0.14). There was a significant reduction in the T2 lesion volume (p<0.001), but not in the change in brain volume (p=0.62). Preplanned subgroup analyses found that rituximab significantly delayed the time to progression for patients aged < 51 years (HR 0.52, p=0.01) and in those patients with gadolinium-enhancing lesions at baseline (HR=0.41, p=0.007). Infection-associated SAEs were more common with rituximab. In summary, the trial did not meet its primary endpoint, but suggested that rituximab shows promise for younger patients with PPMS who have gadolinium-enhancing lesions on MRI.

The potential harms of ocrelizumab and rituximab discussed in the RRMS section apply equally to the use of those therapies in patients with PPMS.

Controversies and Uncertainties

Several limitations to the evidence base reduced our ability to make confident judgments about the comparative net health benefits of DMTs for MS. First, the evolving diagnostic criteria for clinically-definite MS over the decades of clinical trials of DMTs caused important variation among the studied patient populations. Many patients enrolled in trials that used the McDonald criteria would have been diagnosed with CIS under the Poser criteria. Prior analyses have also demonstrated a

decrease in ARRs and risk of disability progression in the clinical trial populations over the past 25 years.²¹⁻²⁵ There is not consensus about the reason or reasons for the observed change in rates. However, the relative benefits of DMTs appear similar across these different populations.

A second limitation was the short follow-up of the randomized trials. The important clinical impacts of MS must be measured over decades and European guidelines recommend 5-year trials. However, the majority of the RCTs followed patients for 1 or 2 years before unblinding. While long-term extension trials demonstrate continued DMT efficacy over time, the true impact of individual drugs is difficult to assess because loss to follow-up introduces selection bias and unblinding introduces measurement bias and differential co-interventions. The short follow-up time in the trials most directly impacted the estimates of sustained disability progression, as demonstrated by the wide credible intervals that often included 1 in the ICER NMA.

Ideally, comparative effectiveness assessments are informed by information from large, high-quality, head-to-head trials. Although NMAs may be performed in the absence of such evidence, the assumptions that are necessary to perform indirect comparisons through common comparators introduce additional uncertainty.

In the NMA and in the model below, we treated all of the DMTs equally, as if each could be used as first line therapy. In reality, most insurance plans support using one of the interferons or glatiramer aceteate as first line therapy and the FDA indications for alemtuzumab, daclizumab, and natalizumab discourage their use as first line therapy.

Finally, the results of the randomized trials of ocrelizumab for patients with RRMS and PPMS are encouraging, but ocrelizumab has not yet received FDA approval. The independent review of the full set of clinical trial data performed by the FDA will be invaluable in assessing the balance of risks and benefits for ocrelizumab. In addition, the limited numbers of patients and short follow-up among those treated with ocrelizumab add to the uncertainty about rare, but serious adverse events that may not be fully appreciated until post-marketing data are available. It is the only DMT under consideration in this review that has no real-world data on safety. Summary

RRMS: DMTs Compared to Best Supportive Care

The data are most robust comparing DMTs to placebo. Of all the agents included in this review, alemtuzumab, natalizumab, and ocrelizumab were the most effective drugs in reducing relapses and they were significantly better than the other DMTs. They were also three of the four most effective drugs at reducing disability progression, although the separation from other DMTs was not as substantial. The differences in efficacy between the alemtuzumab, natalizumab, and ocrelizumab were relatively small and non-significant. We gave alemtuzumab and natalizumab an "A" rating - high certainty of a moderate to large net health benefit. The primary factor distinguishing the two drugs, apart from mechanism of action, is their unique risks for adverse

events. Patients treated with natalizumab are at high risk for PML and must be monitored closely for its signs and symptoms of PML and other infections. Patients treated with alemtuzumab are at risk for life-threatening ITP, infusion reactions, and less severe, but common autoimmune thyroid diseases. We gave ocrelizumab a lower B+ rating (incremental or better net health benefits when compared to placebo) because of additional uncertainty with pending FDA approval and the lack of real-world experience with the drug.

The next most effective group for relapse reduction included daclizumab, rituximab, fingolimod, and dimethyl fumarate. There is only one small trial of rituximab with no data on disability progression, but impressive MRI data, so we judge the evidence on rituximab to be promising, but inconclusive (P/I). We judge daclizumab, fingolimod, and dimethyl fumarate to produce incremental or better net health benefits ("B+"); although point estimates of their benefits may be slightly less than those of ocrelizumab, there is substantial overlap of all four agents' credible intervals compared with one another in both ARR and disability progression NMAs. Daclizumab, fingolimod, and dimethyl fumarate are all FDA-approved and have some real-world experience, so there is greater certainty in the evidence supporting their safety and effectiveness. Of the three, dimethyl fumarate may have a lower risk for very serious adverse events because it does not carry a black box warning, nor is its use monitored under a REMS program.

Finally, our NMA suggested that the interferons, glatiramer acetate, and teriflunomide were substantially similar with respect to their effects on ARR and disability progression. Each of the four prior NMAs came to the same conclusion either about the interferons and glatiramer acetate²⁶, or those agents plus teriflunomide.²⁷⁻²⁹ In addition, a 2017 systematic review of 36 observational trials with data from more than 32,000 patients concluded that the interferons show similar effectiveness in real world practice.³⁰ All are effective at reducing relapses and have good safety profiles with decades of treatment experience to support their safety. The higher doses of interferon β -1a and teriflunomide are consistently more effective than the lower doses. Some of the injectable DMTs can be dosed less frequently and teriflunomide is taken orally. These differences be important for patients when choosing among different options, but the clinical differences in important outcomes are small. As such, we judged with high certainty that these nine DMTs provide incremental net health benefits compared to best supportive care ("B").

Figure ES3 below qualitatively summarizes the relative safety and effectiveness of the DMTs for RRMS. Each drug or group of drugs is represented by an oval. The width of the oval reflects uncertainty about its overall effectiveness and the height of the oval represents uncertainty about the safety of the drug. The safest drugs are highest on the graph and the most effective are to the right. Thus alemtuzumab, which was consistently the most effective drug, is on the right side of the figure but relatively low. The interferon/glatiramer acetate group is on the upper left as those DMTs are among the safest, but least effective. The ideal DMT, both safe and highly effective, would be to the upper right.

More IFN/GA **Ideal for Patients Dimethyl** fumarate Safety **Fingolimod** Natalizumab Teriflunomide Ocrelizumab Daclizumab Drug Type Alemtuzumab Injectable Oral Natalizumab Infused Less Effectiveness Less More

Figure ES3. Safety and Effectiveness of DMTs for RRMS

Wider and taller shapes indicate greater uncertainty. Not drawn to scale.

RRMS: Newer DMTs Compared to Interferons and Glatiramer Acetate

The comparison of the newer agents to the interferons and glatiramer acetate is of greater interest to many stakeholders. Alemtuzumab significantly reduces relapses and disability progression compared to the early injectable DMTs, but carries significant risks for life-threatening complications. We judge it to incremental or better compared to the earlier DMTs (B+). Natalizumab also significantly reduces relapse rates compared to the early injectable agents, but is not significantly better than most for disability progression. The AFFIRM trial demonstrated a large decrease in disability progression compared with placebo, but there are no large randomized trials comparing natalizumab to another DMT.³¹ Given the lack of direct comparative trial results, the availability of data from only a single trial, and the additional harms associated with natalizumab, we judge it to be incremental or better when compared to the injectable DMTs (B+). Daclizumab, fingolimod, and dimethyl fumarate significantly reduced relapses compared to the early injectable DMTs, but are not significantly better at reducing disability progression. They all have greater risks for life-threatening adverse events than the earlier DMTs. Thus, we judge them to be comparable or better when compared to the injectable DMTs (C+).

As noted above, there is only one small trial of rituximab compared to placebo with no data on disability progression, but impressive MRI data. We judge the evidence on rituximab to be

promising, but inconclusive (P/I). Ocrelizumab significantly reduces relapses and disability progression compared to the interferons and glatiramer acetate. To date, it has few know severe adverse events. However, it is does not have FDA approval and there is no real-world evidence supporting its efficacy. Thus, we judge it to produce incremental or better net health benefits when compared to the earlier agents, a "B+" rating. The ARR and disability progression for teriflunomide were not significantly different compared with the interferons and glatiramer acetate. It has the advantage of being an oral agent, but has a boxed warning for hepatotoxicity and has other important side effects. Overall teriflunomide has comparable net health benefits to the interferons and glatiramer acetate.

Interferon β-1a 44 mcg SC TIW (Rebif) and Interferon β-1a 30 mcg IM Once Weekly (Avonex)

We were specifically asked to assess was the comparative effectiveness of interferon β -1a 44 mcg SC three times weekly (Rebif) to interferon β -1a 30 mcg IM once weekly (Avonex). In the NMA, Rebif had a significantly lower relapse rate than Avonex (RR 0.77, 95% CrI 0.65-0.88) and a non-significantly lower disability progression (RR 0.92, 95% CrI 0.65-1.27). In the EVIDENCE trial, which compared these two different formulations head to head, there were non-significant trends towards lower relapse rates (RR 0.84, 95% CI not reported, p=0.093) and disability progression (RR 0.70, 95% CI 0.39-1.25). The primary endpoint in the EVIDENCE trial, the proportion of patients remaining free from relapse, was lower with Rebif (HR 0.70, 95% CI 0.55-0.88, p=0.003). In addition, the MRI outcomes (number of combined unique active lesions, T1 gadolinium-enhancing lesions, and active T2 lesions) were significantly better in the patients treated with Rebif (P<0.001 for all 3 comparisons). Overall the differences in harms were small. Based on these data we judge there to be moderate certainty of a small-to-substantial net health benefit for Rebif compared to Avonex, with high certainty of at least a small net health benefit (B+).

PPMS

For ocrelizumab, we judge there to be moderate certainty of small to substantial net benefit, tempered primarily by the lack of FDA approval and the lack of real world experience with the drug (ICER rating B+). We judge the evidence for the effectiveness of rituximab in PPMS to be promising, but inconclusive (P/I) because the findings in the only trial were not statistically significant, but the subgroup analyses suggested that there was a clinically and statistically significant benefit in younger patients with PPMS who have gadolinium enhancing lesions on MRI.

Other Benefits or Disadvantages

The route of administration is important for patients.^{32,33} Many patients would prefer to take one to two pills each day rather than inject themselves with medication or be required to visit the doctor for a drug infusion, particularly when starting therapy. However, many patients who have been stable on daily injectable therapy for years choose to continue daily injections rather than switch to another agent with less frequent injections or oral administration, suggesting that once patients are comfortable with an effective drug for them, the route of administration may be less important.

Similarly, the travel and time commitment posed by an office visit to receive an IV infusion may discourage some patients from treatment with the infused agents. Conversely, avoiding regular injections or daily pills may appeal to some patients. In addition, the required contact with neurology professionals on a regular basis may enhance the overall care of their MS.

It is also important to recognize the value of having drugs with multiple mechanisms of action. The availability of more potent drugs for those who appear to have aggressive disease is reassuring. Similarly, patients value the ability to switch to a drug with a different mechanism of action when their current therapy is not working. Currently there is no way to match an individual patient to the drug with the most appropriate mechanism of action for their individual form of MS, but future research into the underlying mechanisms of MS may allow physicians to personize therapy in the future.

A reduction in relapse rates and disability progression also has non-medical benefits for patients, their caregivers, and society. Patients with MS are commonly in their most productive years at home, work and volunteering in the community. Relapses cause absence from work and other important life tasks. Progressive disability leads to early retirement with associated loss of income, both for the patient and for caregivers who devote time to caring for the affected individual. Improved outcomes lead to increased productivity in each of these areas. Clinical trial results do not capture these benefits of therapy.

The stress that caregivers experience in supporting patients with MS is not captured in any of the clinical trial results and is an important benefit of improvement in therapy. Relapses and progressive disability have important effects on the quality of life of the caregivers in addition to that experienced by the patient.

Ocrelizumab will likely be the first drug to receive FDA approval for the treatment of PPMS, which is an important benefit.

Comparative Value

We developed a simulation model to estimate the lifetime cost-effectiveness of various DMTs for patients initiating treatment for 1) RRMS and 2) PPMS. The results of our NMA and other estimates from the published literature served as model inputs. Each DMT was associated with an annual cost based on the wholesale acquisition cost (WAC), dosing, administration, and monitoring. Average discounts applied to each drug were derived using data from SSR Health that combined data on net US dollar sales with information on unit sales to derive net pricing at the unit level across all payer types. For best supportive care, we used data on the natural history progression, regression, relapse rates, and mortality from publicly available sources. Costs for best supportive care were based a previous analysis that modeled costs by EDSS state and included inpatient and outpatient admissions, office visits to physicians and other health professionals, examinations, medical devices, non-DMT drugs, and over the counter medicines.

The model estimated the average amount of time that patients spent in each health state, defined by EDSS category. Model outputs included total costs, relapses (RRMS only), life-years, quality-adjusted life years (QALYs), and incremental costs per additional life year, QALY, and prevented relapse (RRMS only). Cost effectiveness ratios for the RRMS model were calculated versus no DMT (i.e., best supportive care) and versus generic glatiramer acetate 20 mg (Glatopa); cost-effectiveness ratios for the PPMS model were calculated versus best supportive care. Further details on the model structure and assumptions are provided in Section 6 of the full report.

Base Case Results

Total discounted costs, relapses, life-years, and QALYs over the lifetime time horizon are shown in Table ES3, with results arranged in order of increasing QALYs. Among patients with RRMS, discounted costs for DMT therapy, SAEs, and MS-related healthcare over the projected lifetime were approximately \$333,300 for supportive care, and ranged from approximately \$572,000 for alemtuzumab to \$1.5 million for daclizumab. The projected number of relapses was 16.4 for supportive care, and ranged from 10.8 for alemtuzumab to 15.6 for interferon β -1a 30 mcg. Discounted life expectancy from age of DMT initiation (age 29 years for RRMS) was 21.4 years for supportive care, and ranged narrowly from 21.9 years for teriflunomide 7 mg to 23.1 years for alemtuzumab. Finally, projected discounted QALYs were 5.7 for supportive care, and ranged from 7.8 for teriflunomide 7 mg to 12.6 for alemtuzumab.

Among patients with PPMS, projected discounted costs, life-years, and QALYs for supportive care were approximately \$264,300, 15.6 years, and 2.7 QALYs, respectively, compared to approximately 16.1 years and 3.3 QALYs for ocrelizumab.

Table ES3. Results for Base-case Analysis

Drug	Cost	Relapses	Life-Years	QALYs	
RRMS					
Supportive Care	\$333,273	16.4	21.4	5.7	
Teriflunomide 7 mg	\$951,141	14.8	21.9	7.8	
Interferon β-1a 22 mcg (Rebif)	\$1,088,892	14.6	21.9	7.9	
Interferon β-1a 30 mcg (Avonex)	\$1,069,959	15.6	22.0	7.9	
Teriflunomide 14 mg	\$968,663	14.8	22.0	8.4	
Glatiramer acetate 20 mg (Copaxone)	\$1,160,237	14.3	22.0	8.4	
Glatiramer acetate 20 mg (Glatopa)	\$862,912	14.3	22.0	8.4	
Interferon β-1a 44 mcg (Rebif®)	\$1,114,885	14.5	22.1	8.5	
Dimethyl fumarate	\$1,023,958	14.3	22.2	9.0	
Fingolimod	\$1,114,879	13.5	22.2	9.0	
Interferon β-1b 250 mcg (Betaseron)	\$1,057,932	14.8	22.2	9.1	
Interferon β-1b 250 mcg (Extavia)	\$959,939	14.8	22.2	9.1	
Peginterferon β-1a	\$1,142,597	14.8	22.2	9.1	
Natalizumab	\$1,261,612	12.3	22.4	10.2	
Daclizumab	\$1,480,080	13.0	22.7	10.9	
Ocrelizumab	-	12.8	22.7	11.0	
Alemtuzumab	\$571,971	10.8	23.1	12.6	
PPMS					
Supportive Care	\$264,334	N/A	15.6	2.7	
Ocrelizumab	-	N/A	16.1	3.3	

^{*}Ocrelizumab has yet to be approved by the FDA, so no total costs could be calculated

We also calculated the cost per additional QALY, cost per additional life-year, and cost per relapse avoided for each DMT compared to supportive care (Table ES4) and compared to generic glatiramer acetate 20 mg (see full report for details). When compared to supportive care for RRMS, costs per additional QALY ranged from approximately \$34,700 per QALY for alemtuzumab to \$341,400 for interferon β -1a 22 mcg; costs per additional life-year ranged from approximately \$141,600 per year for alemtuzumab to \$1.5 million for interferon β -1a 22 mcg; and costs per relapse avoided ranged from approximately \$43,200 for alemtuzumab to \$954,900 for interferon β -1a 30 mcg.

Table ES4. Pairwise Results for DMTs Compared to Supportive Care for RRMS

Drug	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided
Teriflunomide 7 mg	\$289,970	\$1,346,566	\$410,754
Interferon β-1a 22 mcg (Rebif)	\$341,359	\$1,536,810	\$430,998
Interferon β-1a 30 mcg (Avonex)	\$331,381	\$1,412,036	\$954,935
Teriflunomide 14mg	\$236,954	\$1,083,312	\$400,198
Glatiramer acetate 20 mg (Copaxone®)	\$303,302	\$1,346,923	\$407,877
Glatiramer acetate 20 mg (Glatopa)	\$194,253	\$862,653	\$261,230
Interferon β-1a 44 mcg (Rebif®)	\$284,135	\$1,261,603	\$418,760
Dimethyl fumarate	\$211,444	\$964,152	\$332,580
Fingolimod	\$238,970	\$1,089,957	\$276,100
Interferon β-1b 250 mcg (Betaseron)	\$214,355	\$908,578	\$468,100
Interferon β-1b 250 mcg (Extavia)	\$185,369	\$785,715	\$404,801
Peginterferon β-1a	\$238,321	\$1,036,909	\$514,656
Natalizumab	\$208,987	\$929,821	\$228,597
Daclizumab	\$222,782	\$916,425	\$344,719
Alemtuzumab	\$34,659	\$141,639	\$43,178

When compared to generic glatiramer acetate 20 mg, four DMTs were dominated (i.e., less effective and more costly; interferon β-1a 22 and 30 mcg, teriflunomide 7 and 14 mg) for cost per additional QALY and cost per additional life-year, and eight were dominated for cost per relapse avoided (interferon β-1a 22, 44, and 30 mcg; teriflunomide 7 and 14 mg; interferon β-1b 250 mcg [Betaseron and Extavia]; peginterferon β-1a). As branded and generic glatiramer acetate 20 mg were assumed to have equivalent effectiveness, the more expensive branded product would be considered cost-increasing in a cost-minimization analysis. Among those DMTs with better health outcomes compared to generic glatiramer acetate 20 mg, costs per additional QALY ranged from approximately \$148,300 per QALY for interferon β-1b 250 mcg (Extavia) to approximately \$10.4 million per QALY for interferon β-1a 44 mcg; costs per additional life-year ranged from approximately \$528,400 per year for interferon β-1b 250 mcg (Extavia) to \$45.2 million per life-year for interferon β-1a 44 mcg; and costs per relapse avoided ranged from approximately \$196,000 for natalizumab to \$3.3 million for dimethyl fumarate. The incremental results for interferon β-1a 44 mcg are particularly high because the health outcomes are very close to those for generic glatiramer acetate 20 mg, while the costs are higher. Alemtuzumab was dominant for cost per additional QALY, cost per additional life-year, and cost per relapse avoided, meaning that projected costs were lower, projected QALYs and life-years were higher, and projected relapses were lower than glatiramer acetate.

Sensitivity Analysis Results

To demonstrate effects of uncertainty on both costs and health outcomes, we varied input parameters across plausible ranges to evaluate changes in the cost per additional QALY for each DMT compared to generic glatiramer acetate 20 mg. Uncertainty in the costs of DMTs and relative risks for progression had the largest impact on model results.

The results of our probabilistic sensitivity analysis can be found in Appendix Tables E12-E16. Wide variability in the incremental cost-effectiveness ratios was observed, especially when agents were compared to generic glatiramer acetate 20 mg rather than to supportive care. For example, the cost per additional QALY for daclizumab ranged from approximately \$157,000 to \$395,000 when compared to supportive care and from \$129,000 to dominated when compared to generic glatiramer acetate 20 mg. Generic glatiramer acetate, interferon β -1b 250 mcg (Extavia), and alemtuzumab had greater than a 10% chance of meeting the \$150,000 per QALY threshold compared to supportive care; and interferon β -1b 250 mcg (Extavia and Betaseron), teriflunomide 14mg, dimethyl fumarate, peginterferon β -1a, natalizumab, and alemtuzumab had greater than a 10% chance of meeting the \$150,000 per QALY willingness-to-pay level when compared to generic glatiramer acetate.

Threshold Analysis Results

Prices for each drug that would achieve cost-effectiveness thresholds ranging from \$50,000 to \$150,000 per QALY gained are presented in Table ES5. It was not possible to calculate a threshold price for all DMTs at the lower thresholds. This was because even if the price of the DMT were \$0, the patient still accrued costs from second-line drugs and other care. As those other costs are particularly high relative to supportive care, it was not possible to decrease the WAC enough to reach the threshold. Note that the price of alemtuzumab would increase to reach these cost-effectiveness thresholds, as its cost-effectiveness at WAC is below \$50,000/QALY.

Table ES5. Resulting Package Prices for Each DMT to Reach Cost per QALY Thresholds

DMT	WAC (per package)	\$50,000	\$100,000	\$150,000
Teriflunomide 14 mg	\$5,877	N/A; at \$0 WAC, ICE	R is \$106,877	\$974
Teriflunomide 7 mg	\$5,877	N/A; at \$0 WAC, ICE	R is \$131,288	\$647
Interferon β-1a 30 mcg (Avonex)	\$6,287	N/A; at \$0 WAC, ICER is \$70,728	\$653	\$1,856
Interferon β-1b 250 mcg (Betaseron)	\$6,648	\$414	\$2,260	\$4,206
Glatiramer Acetate 20 mg (Copaxone)	\$7,114	N/A; at \$0 WAC, ICER is \$56,413	\$1,228	\$2,648
Interferon β-1b 250 mcg (Extavia)	\$5,947	\$429	\$2,443	\$4,457
Fingolimod	\$6,743	N/A; at \$0 WAC, ICER is \$59,305	\$1,464	\$3,402
Glatiramer Acetate 20 mg (Glatopa)	\$5,194	N/A; at \$0 WAC, ICER is \$56,413	\$1,621	\$3,463
Alemtuzumab	\$20,750	\$32,672	\$71,818	\$110,864
Peginterferon β-1a	\$6,287	N/A; at \$0 WAC, ICER is \$60,120	\$1,403	\$3,086
Interferon β-1a 22 mcg (Rebif)	\$6,629	N/A; at \$0 WAC, ICER is \$83,919	\$407	\$1,651
Interferon β-1a 44 mcg (Rebif)	\$6,629	N/A; at \$0 WAC, ICER is \$68,850	\$880	\$2,449
Dimethyl Fumarate	\$6,820	N/A; at \$0 WAC, ICER is \$80,239	\$1,014	\$3,613
Natalizumab	\$6,000	\$439	\$2,208	\$3,876
Daclizumab	\$6,833	\$1,266	\$2,862	\$4,458
Ocrelizumab (RRMS)*		\$10,604	\$34,251	\$57,899
Ocrelizumab (PPMS)*		\$3,429	\$7,721	\$12,013

^{*}Annual prices are presented for ocrelizumab because package prices are not currently available.

Potential Budget Impact

We used the cost-effectiveness model to estimate the potential budget impact of two new treatments in the RRMS patient population: daclizumab, which received FDA approval in 2016, and ocrelizumab, for which FDA approval is pending. As the price of ocrelizumab is currently unknown, we used prices required to achieve WTP thresholds of \$150,000, \$100,000 and \$50,000 per QALY in our estimates of budget impact. We also assessed the potential budget impact of ocrelizumab as the first agent likely to secure FDA approval in PPMS, using the threshold prices listed above. We did not include other therapies modeled above in this potential budget impact analysis, given their established presence in the market.

In the RRMS cohort, potential budget impact was defined as the total incremental cost of using daclizumab versus natalizumab for the treated population, as clinical input suggested that natalizumab was the most likely competitor for daclizumab market share in the near term. For RRMS patients, we assumed that the share of patients using ocrelizumab would be drawn equally from three existing competitors: natalizumab, fingolimod, and dimethyl fumarate. For the PPMS population, we analyzed the potential budget impact of using ocrelizumab rather than best supportive care, as there is no DMT currently approved for these patients.

The potential budget impact analysis included the entire candidate population for treatment, which consisted of adults with RRMS, whether DMT treatment-naïve or -experienced. Because no DMT has been approved for use in PPMS patients, we assumed all patients in this cohort to be DMT treatment-naïve. The estimated prevalence of MS in the US has been reported as 142.9 cases per 100,000 persons.³⁴ We estimated the proportion of MS patients following the RRMS disease course to be 85%, with the remaining 15% following the PPMS disease course.¹ Applying these proportions to the projected 2016 US population resulted in an estimate of 410,900 RRMS patients and 72,500 PPMS patients in the US over a five-year period. We recognize that both new treatments and the drugs they are displacing will have only a share of the potential market; in the absence of any rigorous projection on what changes in market share would look like, we felt it best to document the percentage of all possible patients who would have access to new medications without crossing the budget impact threshold in order to compare new interventions on a consistent scale.

When treating the eligible RRMS cohort with daclizumab, the weighted potential budget impact results in cost-savings ranging from approximately \$62,900 when using the price to reach the \$150,000/QALY WTP threshold, to approximately \$177,000 when using the price to reach the \$50,000/QALY WTP threshold. When using WAC, the annual potential budget impact exceeded the threshold of \$915 million by 81%. In a given year, 100% of patients could be treated without crossing the ICER budget impact threshold at the three WTP threshold prices as well as discounted WAC, while 55% of the population could be treated without crossing the threshold at the full WAC. Although the difference between WAC and discounted WAC per dose is only approximately \$350, this rather minimal difference leads to a large difference in budget impact owing to the total population size and time horizon.

Table ES6 below illustrates the per-patient budget impact calculations for ocrelizumab in more detail, based on the price to achieve a WTP threshold of \$150,000/QALY for ocrelizumab and the DMTs it would displace. At that price, ocrelizumab would result in cost savings relative to the DMTs it would displace; cost savings would increase at threshold prices to achieve \$50,000 and \$100,000 per QALY gained. Note that we have not assumed a WAC or discounted WAC for ocrelizumab as a price will not be available until after FDA approval.

Table ES6. Per-Patient Budget Impact of Ocrelizumab in RRMS Population, Using Price to Reach WTP Threshold of \$150,000/QALY Gained

	Avg. Annual Per-Patient BI (Over 5-year Time Horizon)	Weighted Avg. Annual Per-Patient BI (over 5-year Horizon)
Ocrelizumab	\$65,992	\$197,132
Natalizumab+Fingolimod+Dimethyl fumarate*	\$81,600	\$242,605
Net	-\$15,608 [†]	-\$45,473 [†]

^{*}Weighted equally among all three drugs

Finally, when treating the eligible PPMS cohort with ocrelizumab, the weighted annual average potential budgetary impact per-patient ranged from approximately \$16,300 using the price to achieve a WTP threshold of \$50,000/QALY to approximately \$38,350 using the price to achieve a WTP threshold of \$150,000/QALY. The annual budget impact of treating the entire PPMS cohort across all WTP threshold prices did not exceed the \$915 million threshold due to the relatively small number of PPMS patients and the assumed prices for ocrelizumab.

Value-based Benchmark Prices

Our value-based benchmark prices for each MS treatment are provided in Table ES7. As noted in the ICER methods document, the value-based benchmark price for a drug is defined as the price range that would achieve cost-effectiveness ratios between \$100,000 and \$150,000 per QALY gained.

With the exception of alemtuzumab, all drugs would require discounts from current WAC prices to fall within ICER's threshold value range of \$100,000 to \$150,000/QALY. For most DMTs, the discounts required to achieve both WTP threshold prices are greater than the current discounted WAC except for glatiramer acetate 20 mg (Glatopa) and interferon β -1b 250 mcg (Extavia). For both drugs, the price required to reach the \$150,000 per QALY threshold is greater than the discounted WAC. As mentioned above, there was no price for which teriflunomide would achieve a \$100,000/QALY threshold. Because the estimated cost-effectiveness of alemtuzumab was well below \$100,000/QALY in our base case, its price could be increased substantially before reaching \$100,000/QALY or \$150,000/QALY thresholds.

[†]Indicates cost-saving

Table ES7. Value-based Price Benchmarks for MS Disease-Modifying Therapies

DMT	WAC (per package)	Cost to achieve \$100,000/QALY	Cost to achieve \$150,000/QALY	Discount from WAC to reach WTP threshold
Teriflunomide 14 mg	\$5,877	N/C	\$974	83%
Teriflunomide 7 mg	\$5,877	N/C	\$647	89%
Interferon β-1a 30 mcg (Avonex)	\$6,287	\$653	\$1,856	70% to 90%
Interferon β-1b 250 mcg (Betaseron)	\$6,648	\$2,260	\$4,206	37% to 66%
Glatiramer Acetate 20 mg (Copaxone)	\$7,114	\$1,228	\$2,648	63% to 83%
Interferon β-1b 250 mcg (Extavia)	\$5,947	\$2,443	\$4,457	25% to 59%
Fingolimod	\$6,743	\$1,464	\$3,402	50% to 78%
Glatiramer Acetate 20 mg (Glatopa)	\$5,194	\$1,621	\$3,463	33% to 69%
Alemtuzumab	\$20,750	\$71,818	\$110,864	246% to 434% increase
Peginterferon β-1a	\$6,287	\$1,403	\$3,086	51% to 78%
Interferon β-1a 22 mcg (Rebif)	\$6,629	\$407	\$1,651	75% to 94%
Interferon β-1a 44 mcg (Rebif)	\$6,629	\$880	\$2,449	63% to 87%
Dimethyl Fumarate	\$6,820	\$1,014	\$3,613	47% to 85%
Natalizumab	\$6,000	\$2,208	\$3,876	35% to 63%
Daclizumab	\$6,833	\$2,862	\$4,458	35% to 58%
Ocrelizumab (RRMS)*		\$34,251	\$57,899	
Ocrelizumab (PPMS)*		\$7,721	\$12,013	

^{*}Annual prices are presented for ocrelizumab because package prices are not currently available. N/C: Not calculable; there is no price that can achieve a given cost-effectiveness threshold, even at \$0

Summary and Comment

Compared to supportive care for RRMS, costs per additional QALY were estimated to total approximately \$35,000 for alemtuzumab, but exceeded the commonly-cited threshold of \$150,000 per QALY for all other DMTs (range: \$185,000 to \$341,000). Alemtuzumab provided the highest number of QALYs gained while costing less than all other treatments except supportive care. The newest approved agent, daclizumab, produced an estimate of approximately \$223,000 per QALY gained. Among patients with PPMS, ocrelizumab was estimated to produce an additional 0.6 QALY or an additional 0.5 life year compared to supportive care, based on relatively modest clinical benefits in this more difficult-to-treat population; the cost per QALY was not estimated as there is no listed price for the drug.

When compared to generic glatiramer acetate 20 mg, alemtuzumab was dominant, meaning that projected costs were lower and projected QALYs and life-years were higher. The other DMTs were either dominated (i.e., more costly and less effective) or not cost effective by standard metrics (from approximately \$150,000 to \$10 million per QALY. The cost-effectiveness of daclizumab was estimated to be approximately \$255,000 per QALY gained.

There are a number of limitations to the model due to inadequate or older sources for data (see full report for details), but no better sources were identified by those who provided comments on our draft model and preliminary report. There is also uncertainty in the estimates used for the benefits and harms of the data, but the overall findings were robust in our sensitivity analyses.

Our budget impact estimates for daclizumab suggest that its use in RRMS will not increase costs to a level that has the potential to strain health-system budgets. Our potential budget impact estimates indicate that all eligible RRMS and PPMS patients could be treated with ocrelizumab at its \$150,000 per QALY gained price without exceeding the budget impact threshold.

Conclusions

In summary, our analyses indicate that the DMTs of interest in this evaluation uniformly and substantially improved health outcomes compared to best supportive care, but demonstrated mixed results compared to generic glatiramer acetate. These outcomes come at a high relative cost. In almost all cases, pairwise results were well above commonly cited thresholds for cost-effectiveness. The notable exception to this finding was alemtuzumab, which consistently demonstrated improved health outcomes and good value compared to both supportive care and generic glatiramer acetate 20 mg. The costs of alemtuzumab were much lower than other DMTs, as it does not require continuous dosing over time and the manufacturer covers the costs of laboratory monitoring, which led to lower incremental cost-effectiveness ratios. Caution in considering the cost-effectiveness findings for alemtuzumab is required, however, given the safety concerns relevant to this DMT described in Section 4 of this report and elsewhere.

1. Background

1.1 Introduction

Background

Multiple sclerosis (MS) is a chronic, immune-mediated inflammatory, neurodegenerative, and demyelinating disease of the central nervous system (CNS).¹ Approximately 400,000 Americans have MS, although this may be an underestimate. The disease affects about three times as many women as men.² Some patient groups, such as African Americans, experience a more rapid and severe clinical course. The annual cost of MS in the United States is estimated to be \$28 billion.³

RRMS

The most common form of MS is relapsing-remitting MS (RRMS), which affects 85% to 90% of patients at presentation.¹ RRMS is characterized by periodic relapses with neurologic symptoms that may diminish or resolve with treatment. Over one to two decades, more than half of untreated patients with RRMS transition to a disease course of slowly accumulating neurologic deficits known as secondary progressive MS (SPMS).⁴

There are more than 10 disease-modifying therapies (DMTs) approved by the Food and Drug Administration (FDA) for the treatment of RRMS. The therapeutic goal of DMTs is to decrease the frequency of relapses and to prevent the disability that accumulates with disease progression over time. Some neurologists believe that the goal of treatment should be to eradicate all evidence of disease activity, including magnetic resonance imaging (MRI) findings. There is controversy about the relative efficacy of the drugs, and several of the newer drugs have been associated with lifethreatening adverse events (e.g., CNS infections, autoimmune diseases, liver toxicity, cancers). In addition, RRMS is a heterogeneous disease, which complicates comparisons across studies of DMTs.

PPMS

Approximately 10-15% of MS patients have primary-progressive MS (PPMS), a clinical course that is characterized by steadily worsening neurologic function, largely without remissions.^{5,6} The mean age of onset of PPMS is 10 years older than that of RRMS and patients with PPMS generally experience more severe disability.^{5,6} While RRMS affects around three times as many women as men, PPMS affects both sexes in approximately equal numbers.⁵

On June 27, 2016, the Food and Drug Administration (FDA) announced that it had granted Priority Review Designation to ocrelizumab for use in PPMS, with an initial decision date of December 28, 2016.⁷ The FDA later extended the review timeline for ocrelizumab to March 28, 2017 to review

additional data about the manufacturing process for the agent.⁸ If approved, ocrelizumab would be the first agent with a PPMS indication. Several other agents have been studied for use in PPMS, but one – rituximab – is of particular interest to practitioners, patients, and insurers because its mechanism of action is similar to that of ocrelizumab, despite its lack of a labeled indication for MS.⁹

Scope of the Assessment

The scope for this assessment is described on the following pages using the PICOTS (Population, Intervention, Comparators, Outcomes, Timing, and Settings) framework. Evidence was summarized from randomized controlled trials as well as high-quality systematic reviews; high-quality comparative cohort studies were considered, particularly for long-term outcomes and uncommon adverse events. We included input from key informant interviews with patient advocacy organizations, a survey developed in collaboration with the advocacy community for this assessment, data from regulatory documents, information submitted by manufacturers, and other grey literature when the evidence met ICER standards (for more information, see https://icer-review.org/methodology/icers-methods/icer-value-assessment-framework/grey-literature-policy/).

Wherever possible, we used head-to-head studies of these interventions. In addition, due to the absence of direct comparisons for many of the agents, we compared agents indirectly through network meta-analysis.

Analytic Framework

The analytic framework for this assessment is depicted in Figure 1. The same framework was used for both RRMS and PPMS with the exception that relapses and progression to secondary-progressive MS (SPMS) were not included for the PPMS analysis.

Populations

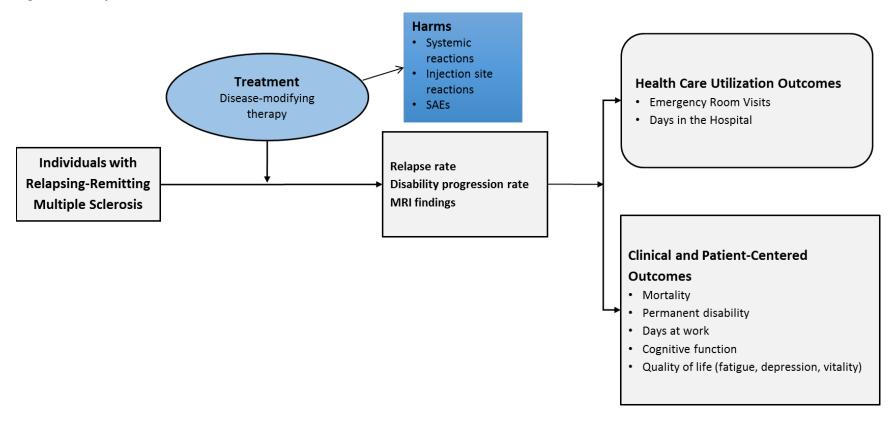
The population for the review was adults ages 18 and older with RRMS or PPMS. The diagnostic criteria for MS have changed over time, beginning with the Shumacher Criteria, the Poser Criteria and continuing through the evolution of the McDonald Criteria (2001, 2005, 2010). Each change allowed for earlier diagnosis of MS, which makes trial populations somewhat different over time. We evaluated the impact of these changes and other sources of heterogeneity in a subgroup analysis of the comparative efficacy of DMTs. We did not include studies focused on clinically isolated syndrome (CIS).

Interventions

The list of interventions was developed with extensive input from patient organizations, which counseled ICER to include nearly all DMTs with current or projected FDA-labeled indications for

RRMS. Practicing clinicians, specialty societies, manufacturers, and payers also provided essential input. Mitoxantrone was excluded from the review and rituximab added based on feedback from the previously mentioned groups. The full set of interventions for the RRMS review is listed below, grouped by route of administration:

- Injectable agents (daclizumab, glatiramer acetate, interferon β -1a, peginterferon β -1b)
- Oral agents (dimethyl fumarate, fingolimod, teriflunomide)
- Infused agents (alemtuzumab, natalizumab, ocrelizumab, rituximab)


For PPMS, the included interventions were ocrelizumab and rituximab.

Comparators

We compared all of the agents within and across routes of administration as described above using head-to-head and placebo-controlled trials. We also compared all of the agents to placebo and to one another though network meta-analysis. In addition, we specifically compared Avonex® (Biogen, Inc.) and Rebif® (EMD Serono, Inc.), two distinct formulations of interferon β -1a, as multiple stakeholders indicated an interest in a detailed comparative analysis of these agents.

The primary comparator for the use of ocrelizumab and rituximab in patients with PPMS was best supportive care, as there is currently no drug with FDA approval for the treatment of PPMS.

Figure 1. Analytic Framework

Outcomes

Patient organizations advised us that the primary goal for patients is to remain independent. They also recommended the inclusion of fatigue, depression, and cognitive function among other symptoms, as these are common issues that affect their quality of life, but have not been widely reported in the seminal clinical trials. This review examined both clinical and health care utilization outcomes of DMTs. To be included, studies were required to report the impact of the intervention on either annual relapse rate or progression of disability assessed by the Expanded Disability Status Scale (EDSS). Many of these outcomes listed below were evaluated descriptively because they have not been consistently evaluated in the randomized trials, and thus cannot be included in a network meta-analysis. Additional outcomes of interest included:

- Disability
- Skilled nursing facility placement
- Need for caretaker/health aide
- Cognitive function
- Fatigue
- Depression
- Timed 25-foot walk
- Manual dexterity
- Visual acuity
- Multiple Sclerosis Functional Composite Measure (MSFC)
- Acceptability of route of administration
- Other measures of functional status, and/or health-related quality of life
- Magnetic resonance imaging (MRI) outcomes (T2, T1, brain volume changes)
- No evidence of disease activity (NEDA 3 and/or 4)
- Adherence
- Treatment-related adverse events including:
 - Serious adverse events (SAEs)
 - Adverse events (AEs) leading to discontinuation of therapy
 - Adverse events unique to specific drugs
- Time to secondary progressive MS
- Time to death
- Costs and cost-effectiveness of DMTs

Where possible we reported the absolute risk reduction in addition to the relative risk reduction for the treatment comparisons.

For PPMS, we assessed the same outcomes listed above with the exception of advancement to secondary-progressive MS and relapse rates. Though relapses may occur in PPMS, they are relatively infrequent and thus were not included as outcomes in studies of the disease course.

Timing

Evidence on intervention effectiveness was derived from studies of at least one year's duration and evidence on harms from studies of at least three month's duration.

Settings

All relevant settings were considered, with a focus on outpatient settings in the United States (US) given the prolonged natural history of RRMS and PPMS.

2. The Topic in Context

There is no definitive clinical guideline to help clinicians and patients with decisions about both initial therapy and choices for subsequent therapies following treatment failure. Shared decisionmaking plays an important role when choosing initial and subsequent therapy, as patients and providers must balance considerations around efficacy, side effects, potential harms, route and frequency of administration, cost, and personal experience. Advocacy organizations have noted that patient preference strongly influences treatment adherence and resultant clinical outcomes. Specifically, ICER received input from advocacy organizations that some patients have a strong preference for oral medications over injectable ones because of their dislike of needles, injection site reactions, and the difficulty of storing medications that require refrigeration. Other patients are equally comfortable with injectable medications. ^{11,12} In addition, the advocacy organizations emphasized that some patients have a low tolerance for risk and are less likely to choose DMTs with known, potentially severe side effects. In addition, coverage policies often require patients to attempt treatment with at least one of the interferons or glatiramer acetate and that they experience inadequate response prior to covering the newer DMTs because of the extended clinical experience with the older agents and the perception that they are safer and less costly. These combined factors demonstrate the considerable uncertainty about the interpretation and application of the current evidence base to guide clinical practice and insurance coverage policy.

Some clinicians advocate the first-line use of drugs that are perceived as more efficacious in a subgroup of patients that they identify as being at high risk for rapid progression of their disease. However, there is no accepted scale for separating patients into "high-risk" and "low-risk" groups. Investigators have identified many risk factors for rapid progression of MS, but most are not reliable and there is no consensus definition for high-risk patients. Some of the characteristics that are commonly cited include the frequency of relapses in the first five years of disease, two or more gadolinium enhancing lesions on MRI, new T2 lesions, the volume and number of T2 lesions on MRI, early brainstem or spinal cord lesions, rapid disability progression, African ancestry, and presenting with bowel or bladder symptoms.³⁵⁻⁴⁰

Thus, our analysis compares each of the DMTs to the others. Head-to-head trials are not available for each pair of drugs, but all of the DMTs have been compared in randomized trials to placebo or to the first drugs approved for the treatment of MS: the interferons and glatiramer acetate. As such, indirect comparisons can be made to assess for differences in treatment effects between all of the agents that have not been directly compared. Where head-to-head data are available for two drugs, we augmented those data with indirect information to comprehensively evaluate the evidence base comparing the benefits and harms of the drugs.

Treatment of MS can be a double-edged sword; MS is believed to be an immune-mediated illness and therapies directed at the disease modulate the immune system to improve outcomes, but can have unintended consequences such as an increased risk for infections or an increase in autoimmune disease. One of the dreaded risks of DMTs for MS is progressive multifocal leukoencephalopathy (PML). PML is caused by an infection by the John Cunningham (JC) virus that attacks the myelin sheaths of nerves in patients with decreased function of the immune system. When PML occurs in MS, approximately 25% of patients die within 6 months and the survivors have increased long-term disability. Other rare, but life-threatening risks of DMTs include autoimmune hepatitis and autoimmune blood disorders. The DMTs that are most effective at slowing the progression of MS tend to have the highest risk for these life-threatening unintended consequences.

We did not review studies in patients with clinically isolated syndrome (CIS). Some of the early trials in CIS provide provocative data suggesting value to early treatment of MS.⁴¹ However, many patients with CIS never go on to MS, so the results are not directly applicable to the role of DMTs in RRMS.

We did not review combination therapy; unlike the experience in other chronic diseases (e.g., cancer, HIV, diabetes, hypertension), the few trials of combination therapy in MS have shown little added benefit.⁴²⁻⁴⁶ Given the novel mechanisms of the newest DMTs, many combinations have not yet been evaluated and some may prove useful.

Disease-Modifying Therapies for MS

The DMTs for multiple sclerosis that are the focus of this review are summarized in Table 1 below. For RRMS, they are intended to decrease relapses and progressive disability, which are the hallmarks of MS. All DMTs are thought to modulate the immune system to decrease the autoimmune damage that is believed to cause the CNS changes responsible for the symptoms of MS. All the drugs in the Table have an FDA indication for RRMS with the exception of ocrelizumab, which the FDA is expected to approve in March 2017 for both RRMS and PPMS, and rituximab, which is approved for other conditions and is used off-label for RRMS and PPMS. Both ocrelizumab and rituximab are monoclonal antibodies directed against the same protein, CD20, which is expressed on B-lymphocytes.

Table 1. DMTs of Interest for the Evidence Review

- 15	Abbreviation in			
Drug (Brand name)	Tables/Figures	Class	FDA-Approved Dose	Year 1 WAC
Subcutaneous injection	n	•	<u>'</u>	1
Interferon β-1a	IFN β-1a 30 mcg	Interferon	30 mcg weekly	\$81,965
(Avonex®, Biogen)				
Interferon β-1b	IFN β-1b 250	Interferon	250 mcg every other day	\$86,659
(Betaseron®, Bayer)	mcg			
	(Betaseron)			
Interferon β-1b	IFN β-1b 250	Interferon	250 mcg every other day	\$72,359
(Extavia®, Novartis)	mcg (Extavia)			
Glatiramer acetate	GA 20 mg	Mixed polymers	20 mg daily	\$86,554
(Copaxone®, Teva)				
Glatiramer acetate	GA 40 mg	Mixed polymers	40 mg three times weekly	\$76,024
(Copaxone®, Teva)				
Glatiramer acetate	GA 20 mg	Mixed polymers	20 mg daily	\$63,193
(Glatopa®, Sandoz)	(Glatopa)			
Interferon β-1a	IFN β-1a 22 mcg	Interferon	22 mcg or 44 mcg three times	\$86,416
(Rebif®, EMD	or 44 mcg		weekly	
Serono)				
Peginterferon β-1a	PEG	Interferon	125 mcg every 14 days	\$81,956
(Plegridy®, Biogen)				
Daclizumab	DAC	Anti-CD25	150 mg once monthly	\$82,000
(Zinbryta®, Biogen		monoclonal		
and AbbVie)		antibody		
Oral				
Fingolimod	FIN	Sphingosine 1-	0.5 mg once daily	\$82,043
(Gilenya®, Novartis)		phosphate		
		receptor		
		modulator		
Teriflunomide	TER	Pyrimidine	7 mg or 14 mg daily	\$76,612
(Aubagio®, Sanofi		synthesis		
Genzyme)		inhibitor		
Dimethyl fumarate	DMF	Multifactorial	240 mg twice daily	\$82,977
(Tecfidera®, Biogen)				
Intravenous infusion				
Natalizumab	NAT	Anti α4β1/	300 mg every 4 weeks	\$78,214
(Tysabri®, Biogen)		α4β7 integrin		
		monoclonal		
		antibody		
Alemtuzumab	ALE	Anti-CD52	12 mg per day for 5 days in the	\$103,749
(Lemtrada®, Sanofi		monoclonal	first year, 3 days every subsequent	
Genzyme)		antibody	year	

Drug (Brand name)	Abbreviation in Tables/Figures	Class	FDA-Approved Dose	Year 1 WAC
Ocrelizumab (Ocrevus®, Genentech)	OCR	Anti-CD20 monoclonal antibody	RRMS: 300 mg twice 14 days apart, then 600 mg once every 24 weeks* PPMS: 300 mg twice 14 days apart, cycle begins every 24 weeks*	Unknown
Rituximab (Rituxan®, Genentech)	RIT	Anti-CD20 monoclonal antibody	1000 mg every 6 months*	\$16,704

WAC: wholesale acquisition cost

Definitions

Commonly-used Clinical Distinctions in MS

<u>Clinically Isolated Syndrome</u>: The first episode of neurologic symptoms lasting greater than 24 hours that is compatible with MS (i.e., demyelination involving optic nerve, brainstem, spinal cord), but does not meet diagnostic criteria for MS.

<u>Relapsing-Remitting MS</u>: MS with periods of partial or complete recovery between acute exacerbations and no significant disability progression between relapses. 85-90% of MS at onset.

<u>Secondary-Progressive Multiple Sclerosis</u>: Initial RRMS for several years that is followed by gradual disease progression with or without further relapses.

<u>Primary-Progressive Multiple Sclerosis</u>: Progressive accumulation of disability from disease onset; usually without relapses, 10-15% of MS at onset.

Evolving Criteria for Diagnosing MS

<u>Poser Criteria (1983)</u>: A diagnosis of clinically-definite MS requires a first clinical demyelinating event followed at least a month later by a second event that involves a different area of the CNS (i.e., dissemination of disease activity in both time and space). MRI findings are not used in the Poser Criteria. Many patients diagnosed with CIS in the era of the Poser criteria would now be diagnosed with clinically-definite MS.

<u>McDonald Criteria (2001)</u>: The first McDonald criteria incorporated the use of MRI findings (see MRI outcomes section below) to document dissemination of disease activity in time and space at first clinical presentation.

^{*}Ocrelizumab and rituximab have not been approved by the FDA for use in MS, dosing data from clinical trials was used.

<u>McDonald Criteria (2005 Revision)</u>: Refinement of the 2001 criteria that allows the appearance of a new T2 lesion on MRI at least 30 days following an earlier baseline or reference scan for dissemination in time.

<u>McDonald Criteria (2010 Revision)</u>: Allows the appearance of a new T2 and/or gadolinium-enhancing lesion on MRI at any time following an earlier baseline or reference scan, or the presence of both asymptomatic gadolinium-enhancing and non-enhancing lesions on a presenting patient's first scan for dissemination in time and/or space along with other simplifications.

Outcomes in MS Research

<u>Annualized Relapse Rate</u>: The per-person average number of relapses in one year for a group of patients. A relapse is usually defined by new or worsening neurologic symptoms that last at least 24-48 hours and that stabilize over days to weeks and resolve gradually, though not always completely. The definition of a relapse is not consistent across trials, which adds to the uncertainty when comparing results across trials. Experts consider the definitions used in the CombiRx trial to be the benchmark. The investigators carefully delineated protocol defined relapses, non-protocol relapses and suspected relapses.⁴⁴

Expanded Disability Status Scale: The oldest and most commonly used measure of disability in MS. The EDSS ranges from 0 to 10 in increments of 0.5, where 0 is a normal examination and 10 is death from MS (see Table 2). Kurtzke first published the scale in 1983.⁴⁷ A clinician assigns a functional score (FS) to a patient in eight neurologic systems (pyramidal, cerebellar, brainstem, sensory, bladder and bowel, vision, cerebral, other) based on a neurologic examination. Scores range from 0-6 with higher scores indicating greater disability. However, as shown in the table, the overall result is not a simple summation of the severity scores.

The EDSS is frequently criticized for being insensitive to small changes, being heavily dependent on mobility, being subjective in some assessments with high intra- and inter-rater variability, and not capturing the full range of patient disabilities.

<u>Sustained Disability Progression</u>: The irreversible worsening of neurologic findings, usually defined as an increase on the EDSS scale of 1 point for those with a baseline EDSS \leq 5 or of 0.5 points for those with a baseline EDSS \geq 5.5. The preferred definition of sustained disability progression is an increase in disability on the EDSS that is present for at least 24 weeks (or 6 months). Trials may also report an increase in disability on the EDSS that is present for at least 12 weeks (or 3 months), but some patients will have resolution of their symptoms between 12 and 24 weeks of follow-up.

Table 2. EDSS Grading System*

Grade	Description
0	Normal neurologic examination (all grade 0 in FS, cerebral grade 1 acceptable)
1.0	No disability, minimal signs in one FS (i.e., grade 1 excluding cerebral grade 1)
1.5	No disability, minimal signs in more than 1 FS (more than one grade 1 excluding cerebral grade 1)
2.0	Minimal disability in one FS (one FS grade 2, others 0 or 1)
2.5	Minimal disability in one FS (two FS grade 2, others 0 or 1)
2.0	Moderate disability in one FS (one FS grade 3, others 0 or 1) or mild disability in three or four FS (three/four FS grade 2,
3.0	others 0 or 1), though fully ambulatory
3.5	Fully ambulatory but with moderate disability in one FS (one grade 3) and one or two FS grade 2, or two FS grade 3, or five FS grade 2 (others 0 or 1)
	Fully ambulatory without aid; self-sufficient; up and about some 12 hours a day despite relatively severe disability,
4.0	consisting of one FS grade 4 (others 0 or 1) or combinations of lesser grades exceeding limits of previous steps; able to
	walk approximately 500 meters (m) without aid or resting
	Fully ambulatory without aid; up and about much of the day; able to work a full day; may otherwise have some limitation
4.5	of full activity or require minimal assistance; characterized by relatively severe disability, usually consisting of one FS
4.5	grade 4 (others 0 or 1) or combinations of lesser grades exceeding limits of previous steps; able to walk approximately
	300 m without aid or rest
	Ambulatory without aid or rest for approximately 200 m; disability severe enough to impair full daily activities (e.g., to
5.0	work full day without special provisions; usual FS equivalents are one grade 5 alone, others 0 or 1; or combinations of
	lesser grades usually exceeding specifications for step 4.0)
	Ambulatory without aid or rest for approximately 100 m; disability severe enough to preclude full daily activities (usual
5.5	FS equivalents are one grade 5 alone; others 0 or 1; or combinations of lesser grades usually exceeding those for step
	4.0)
6.0	Intermittent or unilateral constant assistance (cane, crutch, or brace) required to walk approximately 100 m with or
0.0	without resting (usual FS equivalents are combinations with more than two FS grade 3+)
6.5	Constant bilateral assistance (canes, crutches, or braces) required to walk approximately 20 m without resting (usual FS
0.5	equivalents are combinations with more than two FS grade 3+)
	Unable to walk beyond approximately 5 m even with aid; essentially restricted to wheelchair; wheels self in standard
7.0	wheelchair and transfers alone; up and about approximately 12 hr/day (usual FS equivalents are combinations with more
	than one FS grade 4+; very rarely, pyramidal grade 5 alone)
	Unable to take more than a few steps; restricted to wheelchair; may need aid in transfer; wheels self but cannot carry on
7.5	in standard wheelchair a full day; may require motorized wheelchair (usual FS equivalents are combinations with more
	than one FS grade 4+)
	Essentially restricted to bed or chair or perambulated in wheelchair but may be out of bed itself much of the day, retains
8.0	many self-care functions; generally has effective use of arms (usual FS equivalents are combinations, generally grade 4+
	in several systems)
8.5	Essentially restricted to bed much of the day; has some effective use of arms; retains some self-care functions (usual FS
	equivalents are combinations, generally 4+ in several systems)
9.0	Helpless bedridden patient; can communicate and eat (usual FS equivalents are combinations, mostly grade 4+)
9.5	Totally helpless bedridden patient; unable to communicate effectively or eat/swallow (usual FS equivalents are
	combinations, almost all grade 4+)
10.0	Death due to MS

<u>Multiple Sclerosis Functional Composite (MSFC):</u> The MSFC summarizes the scores on a timed 25-foot walk, the nine-hole peg test, and the paced auditory serial addition test. The goal of this measure is to capture information on key functional measures affected by MS (leg, arm, and cognitive function). The scores are normalized and reported as the number of standard deviations from the mean with higher scores indicating better outcomes. The overall score is the average of the 3 standard deviation scores (z-scores).

<u>Measures Using Magnetic Resonance Imaging (MRI):</u> MRI technology has evolved significantly over the period that MS clinical trials have been performed. Stronger magnets and changing imaging protocols have improved the utility of MRI in the diagnosis and monitoring of patients with MS. However, these improvements lead to challenges in comparing results across studies. The primary outcomes evaluated in MRI studies of MS include:

T1-weighted images:

- Gadolinium-enhancing lesions that are thought to represent areas of active inflammation
- Hypointensities or "black holes" are thought to indicate areas of permanent nerve damage (axon loss)

T2-weighted images:

 Both the volume and number of T2-weighted lesions as well as the incidence of new and enlarging lesions are sometimes reported. The total volume of T2 lesions is used as a surrogate for the total amount of CNS disease, both old and new.

Brain volume:

• In MS, brain volume loss is correlated with the extent of disability and occurs early in the disease course. However, there are several techniques for measurement of brain volume and it is not routinely measured.

Insights Gained from Discussions with Patients and Patient Groups

ICER had conversations with individual patients and multiple patient advocacy organizations, including the MS Coalition (which also includes clinical societies), the National MS Society, Accelerated Cure, MS Association of America, and PatientsLikeMe. Several consistent themes emerged from these discussions, including the substantial burdens posed by an MS diagnosis, the factors that patients consider to be the most important when selecting a treatment, disappointment in the absence of data on patient-centered outcomes in the clinical literature, and pervasive access and affordability issues faced by many patients.

Patients highlighted the many burdens that come with an MS diagnosis, including economic hardships that are underappreciated in most economic analyses of MS. These include lost wages from missed work, the need to transition to part-time work or the inability to continue working, the high cost of medications, the costs of supportive medical equipment, modifications of the home to accommodate disability, and home care support. Care partners experience substantial burdens as well, as they may need to take time off from work to support their friend or relative with MS. Finally, the majority of patients are young women, so the impact of the illness on children needs to be considered.

Patients want their providers to be able to choose the medication that is best for them without restriction, but feel that the choice of DMT is driven by their insurance coverage and the willingness of their providers to appeal coverage denials. The high cost of DMTs for MS can result in large out-of-pocket costs for individuals who are unaware of, or ineligible for, patient-assistance programs offered by manufacturers or non-profit organizations. For instance, Medicare patients pay an average of more than \$6000 in out of pocket costs per year for Avonex, Tecfidera, or Copaxone.⁴⁸

The primary goal for patients is to remain independent, but it must be balanced with the risks for adverse events that are carried by the therapies most likely to keep them independent. These risk-benefit assessments are complicated by the lack of long-term data; many of the studies of DMTs are short term (1-3 years) whereas disability typically accumulates over a much longer time horizon of 10 to 15 years. Advocacy organizations noted that many studies are open-label or poorly controlled, which creates uncertainty about the validity of the results.

Patients expressed frustration that patient-reported outcomes are not routinely collected and reported in the pivotal trials. They would like more data regarding the effect of DMTs on fatigue, cognitive function, visual acuity, mood, and quality of life. They want to know about the relative benefits of all available drugs and strongly encouraged ICER to include new and off-label agents, including ocrelizumab and rituximab, in our review.

The MS Coalition generously assisted ICER by creating an online questionnaire (Appendix F) to assess patient perspectives on the most important issues for patients when making decisions about disease modifying therapies. Almost 16,000 patients in the United States responded. Their average age was 51 years and 79% were women. The participants were predominantly white (88%), but 8% were black, and 4.5% were Hispanic. Respondents were taking a wide range of medications including glatiramer acetate (24%), dimethyl fumarate (19%), natalizumab (13%) and fingolimod (11%). Interestingly, 3% were taking rituximab despite the absence of an FDA indication for this therapy. We asked those currently taking an MS medication to rate the importance of a series of factors in selecting the drug that they were currently taking. Those who responded (n=2,511) rated each factor on a five-point scale from not important to very important. The percentages responding either important or very important are summarized in Table 3.

Table 3. The Patient Perspective on Important Factors when Choosing a DMT

Decision-making factor	Important / Very Important
Delay disability	94%
Prevent relapse / new MRI lesions	94%
Continue working / normal activities	90%
Provider recommends therapy	86%
Other long term risks	71%
Health plan restrictions	69%
Risk of PML	68%
Out-of-pocket costs	66%
Route of administration	61%
Dosing frequency	58%
Risk of side effects	55%
Monitoring / blood tests	44%

These results echo what we heard when speaking with individual patients and their advocacy organizations: what patients primarily care about is maintaining independence and avoiding disability. The long-term risks of the drugs also weigh heavily in decision-making, as well as the risks of rare but important side effects such as PML, an often-fatal demyelinating disease that has been associated with immunosuppressive therapies in MS and other diseases. Dosing, monitoring, side effects, and costs are all important, but much less important than maintaining function. Patients trust their care providers to recommend the therapy that is best for them.

3. Summary of Coverage Policies and Clinical Guidelines

3.1 Coverage Policies

To understand the insurance landscape for DMTs for MS, we reviewed publicly available coverage policies from Centers for Medicare and Medicaid Services (CMS), California Department of Health Care Services (DCHS), all major national private insurers (Aetna, Anthem, Cigna, Humana, United Healthcare [UHC]), and the two major private insurers in California (Health Net, Blue Shield of California [BSCA]).

We were unable to identify any CMS National Coverage Determinations (NCDs) or Local Coverage Determinations (LCDs) related to the use of DMTs for MS. We were unable to locate any policies pertaining to the injectable or oral DMTs from California DHCS, but both alemtuzumab and natalizumab are listed in the contract drug list for injectable therapies. ^{49,50} Most national and regional private insurers placed all DMTs on high/specialty formulary tiers, and three (Anthem, Humana, and Health Net) listed every available agent either on the highest tier or as a specialty medication. Only one payer, Cigna, included any agents at the lowest formulary tier.

All payers made use of step therapy and prior authorization policies to manage therapies for MS (Table 4). Typical step therapy policies required a contraindication, intolerance, or inadequate response demonstrated by breakthrough disease (relapses, MRI findings, or EDSS progression while receiving therapy) to one or more preferred injectable therapies (not including daclizumab) or an oral agent. For example, patients with an Aetna plan must attempt treatment with three agents (generic glatiramer acetate 20 mg, glatiramer acetate 40 mg, interferon β -1a 22/44 mcg, or fingolimod) before being authorized for treatment with dimethyl fumarate. Across nearly every payer, similar policies were applied to oral agents, infusions, and non-preferred injectable therapies.

Aetna was the only private payer with a publicly available policy authorizing the off-label use of rituximab, though patients are required to demonstrate inadequate response to six or more DMTs including an interferon β , glatiramer acetate, teriflunomide, dimethyl fumarate, fingolimod, alemtuzumab, natalizumab, or daclizumab.⁵¹ All other payers either considered rituximab to be investigational for use in MS, or did not list the agent in their formularies or utilization management documents.

Table 4. Representative Private Payer Policies for MS DMTs

	Aetna ⁵²	Anthem ⁵³	Cigna ⁵⁴	Humana ⁵⁵	UHC ⁵⁶	Health Net ⁵⁷	BSCA ^{58,59}
Interferon β-1a 30	mcg (Avonex)						
Tier	5	4	2	N/C	2	SP	SP
ST	Yes	No	No	No	No	No	No
PA	Yes	Yes	Yes	Yes	Yes	Yes	No
Preferred Agent	No		Yes	No			
Interferon β-1b 25	0 mcg (Betaseron)						
Tier	5	4	2	5	2	SP	SP
ST	Yes	No	No	No	No	No	Yes
PA	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Preferred Agent	No		Yes	No			
Interferon β-1b 25	0 mcg (Extavia)						
Tier	5	5	2	N/C	3	SP	SP
ST	Yes	No	No	No	Yes	No	Yes
PA	Yes	Yes	Yes	No	Yes	Yes	Yes
Preferred Agent	No		Yes	No			
Glatiramer Acetat	e 20 mg (Copaxone)						
Tier	5	5	2	5	2	NL	4
ST	Yes	No	No	No	No		No
PA	Yes	Yes	Yes	Yes	Yes		No
Preferred Agent	No		Yes	No			
Glatiramer Acetat	e 20 mg (Glatopa)						
Tier	4 (preferred)	4	1	N/C	3	2	SP
ST	No* ⁵¹	No	No	Yes*60	No	No	No
PA	Yes	Yes	Yes	Yes ⁶⁰	Yes	Yes	No
Preferred Agent	No		Yes	No			

Aetna ⁵²	Anthem ⁵³	Cigna ⁵⁴	Humana ⁵⁵	UHC ⁵⁶	Health Net ⁵⁷	BSCA ^{58,59}
te 40 mg (Copaxone				_	'	'
4 (preferred)	4	2	5	2	SP	4
No	No	No	No	No	No	No
Yes	Yes	Yes	Yes	Yes	Yes	No
Yes		Yes	No			
2/44 mcg (Rebif)						
4 (preferred)	5	2	5	3	SP	SP
No	No	No	No	Yes	No	No
Yes	Yes	Yes	Yes	Yes	Yes	No
Yes		Yes	No			
a (Plegridy)						
5	4	2	N/C	3	SP	SP
Yes	No	No		No	No	Yes
Yes	Yes	Yes		Yes	Yes	Yes
No		Yes				
ryta)						
5	5	3	N/C	NL	SP	SP
Yes	Yes*61	No	Yes*62		No	
Yes	Yes	Yes			Yes	Yes
No		No				
ya)						
4 (preferred)	4	2	5	3	SP	4
No	No	No	No	No	No	No
Yes	Yes	Yes	Yes	Yes	Yes	No
Yes		Yes	No			
	te 40 mg (Copaxone) 4 (preferred) No Yes Yes 2/44 mcg (Rebif) 4 (preferred) No Yes Yes Yes A (Plegridy) 5 Yes Yes No ryta) 5 Yes No ryta) 4 (preferred) No ya) 4 (preferred) No Yes	### ### ##############################	### 40 mg (Copaxone) 4 (preferred)	4 (preferred)	## 40 mg (Copaxone) 4 (preferred)	## 40 mg (Copaxone) 4 (preferred)

	Aetna ⁵²	Anthem ⁵³	Cigna ⁵⁴	Humana ⁵⁵	UHC ⁵⁶	Health Net ⁵⁷	BSCA ^{58,59}
Teriflunomide 7/1	4 mg (Aubagio)						
Tier	5	4	2	N/C	3	SP	SP
ST	Yes	No	No	No	No	No	Yes
PA	Yes	Yes	Yes	No	Yes	Yes	Yes
Preferred Agent	No		Yes	No			
Dimethyl Fumarat	e (Tecfidera)			·			
Tier	5	4	2	N/C	2	SP	SP
ST	Yes	No	No	No	No	No	No
PA	Yes	Yes	Yes	Yes	Yes	Yes	No
Preferred Agent	No		Yes	No			
Natalizumab (Tysa	ibri)		<u>'</u>	<u>'</u>	<u>'</u>		
Tier	5	4	N/C	5	NL	NL	NL
ST	Yes*	Yes*63	Yes* ⁶⁴	No		Yes*65	
PA	Yes	Yes		Yes			
Preferred Agent	No			No			
Alemtuzumab (Lei	mtrada)		<u>'</u>		<u>'</u>		
Tier	5	4	N/C	N/C	NL	NL	NL
ST	Yes	Yes* ⁶¹	Yes* ⁶⁴	Yes*66	Yes* ⁶⁷		
PA	Yes	Yes		Yes	Yes* ⁶⁷		
Preferred Agent	No						
Rituximab (Rituxa	n)	·	·	·	·	·	1
Tier	N/A	N/C ⁶⁸	N/C ⁶⁴	N/C ⁶⁹	N/C ⁷⁰		
ST	Yes* ⁵¹						
PA	Yes						
Preferred Agent	No						
		ar authorization CD: cr		1	1		1

N/C: not covered, NL: not listed, PA: prior authorization, SP: specialty, ST: step therapy

^{*}Information available in written utilization management policies conflict with the posted drug formulary; values in these cells reflect the utilization management policy. More detailed information can be found in the citation following the asterisk.

3.2 Clinical Guidelines

American Academy of Neurology (AAN), 2016⁷¹

The AAN draft guidelines for the use of DMTs in MS are summarized below; they are, however, subject to change based on a public comment period, and should not be interpreted as final. The guidelines do not contain treatment sequencing recommendations, but rather recommend that choice of DMT be guided by shared decision-making between the patient and physician. Together, the patient and physician must consider safety, efficacy, tolerability, method of administration, compatibility with patient lifestyle, and cost when selecting a therapy. Physicians may begin DMT treatment after one demyelinating event or if two or more brain or spinal cord lesions consistent with MS are detected by imaging. Patients with CIS or RRMS who have not had a relapse in the previous 2 years or recent MRI activity may be monitored closely or treated with a DMT. Clinicians may consider switching therapies when a patient experiences at least one relapse, two or more new MRI lesions, or increased disability over a one-year period while on their current DMT.

The guidelines recommend that mitoxantrone, an agent that was excluded from our report, not be used in MS. Individuals with highly-active disease should be treated with alemtuzumab, fingolimod, or natalizumab, though the guidelines note that definitions of highly-active disease vary. Clinicians should advise patients about the risk for PML associated with natalizumab, fingolimod, and dimethyl fumarate, and should discuss switching from natalizumab to an agent with lower PML risk for patients who are JC virus positive. Patients who discontinue treatment with natalizumab are at increased risk for rebound disease activity (i.e., relapses and MRI activity), and if the subsequent DMT is fingolimod, treatment should begin within eight weeks to reduce said risk. Given substantial uncertainty regarding the risks of treatment cessation, physicians should advise patients that close follow-up is needed after discontinuation of DMT treatment. Clinicians should recommend that patients who achieve disease stability be allowed to continue therapy with their current agent.

The guidelines do not recommend therapy with any currently-approved DMTs for individuals with PPMS, though it should be noted that at the time the draft guidelines were published, the FDA had not issued a decision on ocrelizumab.

Canadian Agency for Drugs and Technology in Health (CADTH), 2013⁷²

CADTH's 2013 guidelines for the treatment of RRMS recommend glatiramer acetate or interferon β -1b as initial therapies, noting that both agents contribute to meaningful reductions in ARR relative to placebo and are similarly cost-effective. At first-line, individuals with a contraindication to glatiramer acetate should be treated with interferon β -1b, with the opposite recommended for those with a contraindication to interferon β -1b. Unless an individual patient has a contraindication to both first-line options, dimethyl fumarate is not recommended as a first-line treatment for

RRMS. Dimethyl fumarate, fingolimod, and natalizumab are recommended for patients who do not respond to first-line treatment options. Combination therapy is not recommended for RRMS.

MS Coalition, 2016⁷³

The MS Coalition consensus guidelines recommend that DMT treatment be started as soon as possible after an RRMS diagnosis, for individuals who experience a demyelinating event and MRI findings consistent with MS, and for individuals with progressive forms of MS who experience relapses and/or inflammatory activity. Treatment should be continued indefinitely unless response to therapy is inadequate, side-effects become intolerable, patients are unable to adhere to the treatment regimen, or a more appropriate therapy becomes available. Any decision to switch therapies should be driven by shared decision-making between the clinician and patient, and should only be considered for medically-appropriate reasons. Clinicians should consider treatment switches when a patient experience sub-optimal treatment response to their current agent (i.e., relapse, MRI activity, or other clinical activity). Clinicians should consider alternative regimens using a different mechanism of action when changing therapy.

The MS Coalition recommends that clinicians have access to the full armamentarium of MS treatment options given wide variation in mechanism of action, possible contraindications to one or more agents, differing DMT safety profiles, and individual patient preference. Access to treatment should not be dictated by relapse frequency, extent of disability, or patient demographic characteristics. The absence of relapse activity should not be used as justification for treatment cessation.

National Institute for Health and Care Excellence (NICE), 2002-2014⁷⁴

The NICE Pathway recommends against the use of glatiramer acetate or an interferon β in the management of MS, except in individuals whose disease was well-managed by an agent in either class when the guidelines were released. Dimethyl fumarate and teriflunomide are recommended for individuals with RRMS, defined as having two clinically-significant relapses in the previous two years, provided the patient's disease is not highly active or rapidly progressing. Alemtuzumab is recommended without qualifying statements for the treatment of RRMS. Fingolimod should be used in individuals with highly-active MS whose relapses worsened or were ineffectively controlled over the prior year despite treatment with an interferon β . Natalizumab is recommended for use in patients with severe, rapidly-evolving RRMS, defined as at least two disabling relapses within one year, at least one gadolinium-enhancing lesion, or a significant increase in T2 lesion load in comparison with a previous MRI.

4. Comparative Clinical Effectiveness

4.1 Overview

To inform our analysis of the comparative clinical effectiveness of DMTs in the treatment of RRMS and PPMS, we abstracted evidence from available clinical studies of these agents, whether in published or abstract form.

The therapies of interest for RRMS are:

- Daclizumab
- Glatiramer acetate
- Interferon β-1a
- Peginterferon β-1a
- Interferon β-1b
- Dimethyl fumarate
- Fingolimod
- Teriflunomide
- Alemtuzumab
- Natalizumab
- Ocrelizumab
- Rituximab

The therapies of interest for PPMS are:

- Ocrelizumab
- Rituximab

As described previously in the Background section, comparators of interest include best supportive care as well as each of the individual agents compared to the others. We specifically addressed areas of interest to stakeholders that were identified during the scoping process for this review including the newer agents (daclizumab, ocrelizumab) and two specific direct comparisons (interferon β -1a 30 mcg intramuscular [IM] injection weekly compared to interferon β -1a 44 mcg subcutaneous [SC] injection three times weekly; ocrelizumab compared to rituximab).

We focused primarily on clinical benefits that matter to patients (relapse rates, disability progression) and potential harms (drug-related adverse events). Patient-reported outcomes (quality of life, fatigue, mood, cognitive function, etc.) are presented when reported in individual trials, but there was not consistent reporting across trials, so it is difficult to make broader

conclusions about them. Similarly, MRI outcomes are reported for individual trials, but many different MRI outcomes have been reported over time and MRI technology has improved markedly over the decades during which the clinical trials were performed, so it is impossible to compare across studies.

4.2 Methods

Data Sources and Searches

Procedures for the systematic literature review assessing the evidence on disease modifying therapy for RRMS and PPMS followed established best methods.⁷⁵ We conducted the review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.⁷⁶ The PRISMA guidelines include a list of 27 checklist items, which are described further in Appendix Table A1.

We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials for relevant studies 9/15/16 without restrictions on study date. Each search was limited to English-language studies of human subjects and excluded articles indexed as guidelines, letters, editorials, narrative reviews, case reports, or news items. The search strategies included a combination of indexing terms (MeSH terms in MEDLINE and EMTREE terms in EMBASE), as well as free-text terms, and is described in Appendix Table A2. We included abstracts from conference proceedings in the literature search. In order to supplement the above searches and ensure optimal and complete literature retrieval, we performed a manual check of the references of recent relevant reviews and meta-analyses and contacted the manufacturers of agents included in this review. Trials that were initially available in abstract form were updated when published in peer reviewed journals.

Study Selection

For the inputs to the network meta-analysis, we included evidence from phase II or III randomized controlled trials (RCTs) that directly compared the DMTs of interest to one another or to placebo and reported either relapse rates or sustained disability progression over a minimum of 48 weeks follow-up. We limited the review to the doses that match the FDA-approved indication except for drugs that do not have a current FDA indication for MS. For those drugs, we used the dose reported in the randomized trials. We supplemented our review of published studies with data from conference proceedings, regulatory documents, and information from manufacturers. Studies that did not compare at least two relevant treatment arms or one relevant treatment arm to placebo were excluded.

Data Extraction and Quality Assessment

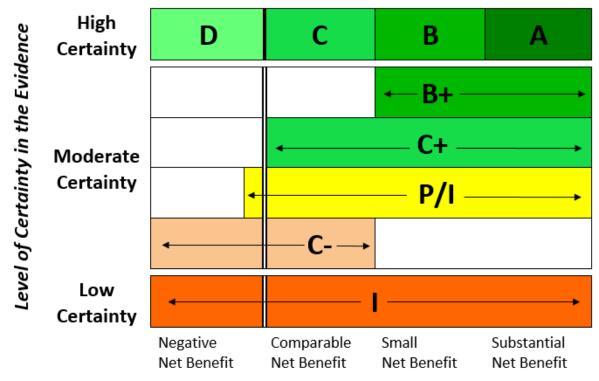
We abstracted trial characteristics, patient characteristics and study quality measures in data tables (Appendix Tables C1-C3). We also abstracted key outcomes including annualized relapse rates (ARRs) and confirmed disability progression sustained for a minimum of 12 and 24 weeks (Appendix Tables C4-C6). The primary reviewer abstracted data from all trials and a second reviewer confirmed the results. Differences were resolved by consensus.

We use the criteria published by the US Preventive Services Task Force (USPSTF) to assess the quality of clinical trials and cohort studies, using the categories "good," "fair," or "poor."⁷⁷

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study; reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention paid to confounders in analysis. In addition, intention to treat analysis is used for RCTs.

Fair: Any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs.

Poor: Any of the following fatal flaws exists: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat or modified intention to treat (e.g., randomized and received at least one dose of study drug) analysis is lacking.


Assessment of Level of Certainty in Evidence

We used the <u>ICER Evidence Rating Matrix</u> (see Figure 2) to evaluate the evidence for a variety of outcomes. The evidence rating reflects a joint judgment of two critical components:

- a) The **magnitude** of the difference between a therapeutic agent and its comparator in "net health benefit" the balance between clinical benefits and risks and/or adverse effects AND
- b) The level of **certainty** in the best point estimate of net health benefit.⁷⁸

Figure 2. ICER Evidence Rating Matrix

Comparative Net Health Benefit

- A = "Superior" High certainty of a substantial (moderate-large) net health benefit
- B = "Incremental" High certainty of a small net health benefit
- C = "Comparable" High certainty of a comparable net health benefit
- D = "Negative"- High certainty of an inferior net health benefit
- B+= "Incremental or Better" Moderate certainty of a small or substantial net health benefit, with high certainty of at least a small net health benefit
- C+ = "Comparable or Better" Moderate certainty of a comparable, small, or substantial net health benefit, with high certainty of at least a comparable net health benefit
- P/I = "Promising but Inconclusive" Moderate certainty of a comparable, small, or substantial net health benefit, and a small (but nonzero) likelihood of a negative net health benefit
- C-= "Comparable or Inferior" Moderate certainty that the point estimate for comparative net health benefit is either comparable or inferior
- I = "Insufficient" Any situation in which the level of certainty in the evidence is low

Data Synthesis and Statistical Analyses

There was sufficient evidence to perform network meta-analyses (NMA) for sustained disability progression and ARRs. There was sparse evidence and no consistent outcome measure for MRI and quality of life outcomes, so NMAs were not performed. Detailed descriptions of the NMA methods and sensitivity analyses are in Appendix D.

4.3 Results

The results first consider drugs for RRMS and then drugs for PPMS. The RRMS results are grouped by relative efficacy for the primary outcomes: ARR and sustained disability progression.

Study Selection

The literature search identified 1,834 citations (Appendix Figure A1). After reviewing the titles and abstracts, 113 full text articles were evaluated. There were 33 unique randomized trials for the RRMS indication and 2 randomized trials for the PPMS indication.

RRMS

Appendix Tables C1-C3 summarizes the characteristics of the included studies. The 33 studies randomized 21,768 participants to one or more of the DMTs considered in this review or to placebo. The oldest trial¹³ was published in 1987 and the most recent trial was published in 2017.¹⁴ Eight of the trials used the Poser definition of clinically-definite MS to define their patient population and the remaining 25 trials used the McDonald criteria to define their eligible population. Eleven of the trials included only treatment-naïve patients, one trial included only treatment-experienced patients, and the remaining trials included a mix of both or did not report prior treatment status.

The average age of the study participants was about 36 years across the trials and approximately 70% were women (Appendix Table C2). The participants were predominantly white (~90%). The average duration of MS ranged from 1.1 to 10.5 years across the trials, but most averaged 5-6 years. Their EDSS grade at baseline ranged from 2.0 to 3.0 and the number of relapses in the prior year ranged from 1.0 to 2.2. Finally, the average number of gadolinium-enhancing lesions on MRI, which was not reported in 14 of the trials, ranged between 1.3 and 4.3.

PPMS

There are only two studies of DMTs for PPMS. Both are described in detail in the "Key Studies" section below.

Quality of Individual Studies

Using criteria from the USPSTF, we rated five of the trials included in our NMA to be of good quality (Appendix Table C3). 14,31,79,80 We judged these studies to be of good quality because appropriate randomization was performed, the study arms were comparable at baseline, key outcomes were measured in the same way for all study arms, and no differential or significant loss to follow-up was observed. The primary reasons that other trials were downgraded were lack of blinding of the study participants and staff, significant loss to follow-up, and lack of measurement of one of the key

outcomes: disability progression sustained for 24 weeks. We rated 17 publications to be of fair quality. We rated the remaining 11 studies as poor quality, primarily because of greater than 20% loss to follow-up.

Key Studies

The key studies described below include the pivotal trials for the newest agents (daclizumab, rituximab, and ocrelizumab), studies of interest for this review based on specific questions raised by patients, providers, and insurers during our scoping process, (direct comparison of Avonex and Rebif, two different formulations of interferon β -1a), and a brief summary of any additional trials directly comparing any of the DMTs. We also summarized prior NMAs on DMTs for RRMS.

RRMS

Daclizumab (Zinbryta)

The SELECT trial randomized 621 patients to one of two doses of daclizumab high yield process or placebo and followed them for 52 weeks. 81 For this review, we focused on the FDA approved dose of daclizumab (150 mg SC every 4 weeks, n=201) and the placebo group (n=196). We judged the study to be of fair quality, primarily because disability progression sustained for 24 weeks was not reported as well as the short follow-up (one year) and relatively large loss to follow-up (9%) for a one-year study. The primary outcome compared the relapse rate for each arm using negative binomial regression adjusted for the number of relapses in the year prior to study entry as well as baseline EDSS score and age. The rate ratio (RR) for ARR was 0.46 (95% confidence interval [CI] 0.32-0.67, p<0.001) for daclizumab compared to placebo. The hazard ratio (HR) for confirmed disability progression sustained for at least 12 weeks was 0.43 (0.21-0.88, p=0.021). There were also significant reductions in the following MRI outcomes: new gadolinium-enhancing lesions at 52 weeks (0.3 vs. 1.4, odds ratio [OR] 0.15, 95% CI 0.09-0.25, p<0.001) and new or enlarging T2 hyperintense lesions at 52 weeks (2.4 vs. 8.1, relative risk reduction [RRR] 70%, 95% CI 59-78%, p<0.001), but not percentage change in whole brain volume at 52 weeks (-0.79 vs. -0.74, p=0.33). There were also significant improvements in quality of life as measured by the Multiple Sclerosis Impact Scale (MSIS-29) physical score, the EuroQol five dimensions (EQ-5D) summary health index, the EuroQol visual analog scale, and the 12-item short form health survey (SF-12) physical and mental health components for daclizumab compared to placebo. Adverse events (AEs) and serious adverse events (SAEs) were similar in the two groups, but there were more serious infections in the daclizumab group (3% vs. 0%). There were also more reports of liver enzyme elevations > 5 times the upper limit of normal (4% vs. <1%). This is noteworthy as severe hepatic injury is listed as a black box warning for daclizumab.

The DECIDE trial randomized 1,841 patients to daclizumab or interferon β -1a 30 mcg IM each week for up to 144 weeks (median 108.7 weeks for daclizumab; median 111.4 weeks for interferon β -

1a).82 It is one of the largest and longest randomized trials of the DMTs. The study was judged to be of poor quality primarily because of the large loss to follow-up (23%, > 20% considered a fatal flaw due to risk for selection bias). The primary outcome compared the relapse rate for each arm using negative binomial regression adjusted for baseline relapse rate as well as prior interferon use, baseline EDSS score and age. The ARR for daclizumab was lower (0.22 vs. 0.39, p<0.001, RR 0.55, 95% CI 0.47-0.64) for daclizumab compared to interferon β-1a. The HR for confirmed disability progression sustained for at least 12 weeks was 0.84 (0.66-1.07, p=0.016) and the HR for confirmed disability progression sustained for at least 24 weeks was 0.79 (0.59-1.06, p=0.012). There were also significant reductions in the following MRI outcomes: new gadolinium-enhancing lesions at 96 weeks (0.4 vs. 1.0, OR 0.25, 95% CI 0.20-0.32, p<0.001); new or enlarging T2 hyperintense lesions at 96 weeks (4.3 vs. 9.4, 54% reduction, 95% CI 47-61%, p<0.001), and percentage change in whole brain volume at 96 weeks (-0.56% per year vs. -0.59% per year, p<0.001). There were significant improvements in quality of life as measured by the MSIS-29 physical score and the EQ-5D summary health index for daclizumab compared to interferon β -1a 30 mcg. There were also statistically significant improvements on the MSFC at 96 weeks (0.091 vs. 0.055, p<0.001) as well as its components, the timed 25-foot walk, the 9-hole peg test, and the 3-second paced auditory serial addition test. SAEs were more common in the daclizumab group when MS relapses were excluded (15% vs. 10%) as were discontinuations due to non-MS adverse events (14% vs. 9%). There were more serious infections (4% vs. 2%) and serious hepatic events (1% vs. <1%) in the daclizumab group.

In summary, the SELECT trial found that daclizumab was significantly better than placebo at reducing relapses, disability progression, and MRI lesions. The DECIDE trial found that daclizumab was significantly better than interferon β -1a 30 mcg at reducing relapses and MRI lesions, but not disability progression. There were small improvements in quality of life measures in both trials. There were also more SAEs in the DECIDE trial with an increase in serious infections in both trials, though the increase was small.

Ocrelizumab (Ocrevus)

There are two pivotal phase III randomized trials for ocrelizumab: OPERA I and OPERA II.¹⁴ The investigators randomized 821 and 835 patients, respectively, to either ocrelizumab IV (300 mg on days 1 and 15 and then 600 mg IV once every 24 weeks for 3 doses) or interferon β -1a 44 mcg SC three times a week (TIW) and followed them for 96 weeks. We judged the trials to be of good quality. The primary outcome, ARRs in the ocrelizumab group compared to that of the interferon β -1a, was significantly lower in the ocrelizumab group (46% and 47% ARR reduction, respectively, p<0.001 in both trials). There were also significant reductions in confirmed disability progression sustained for 24 weeks (HR 0.57, 95% CI 0.34-0.95 for OPERA I and HR 0.63, 95% CI 0.40-0.98 for OPERA II through 96 weeks of follow-up). There was a 94-95% reduction in gadolinium-enhancing lesions in the two trials with ocrelizumab compared to interferon β -1a 44 mcg (p<0.001, for both

trials). The number of new or enlarging T2 lesions was reduced with ocrelizumab (77% and 83% respectively, p<0.001 for both trials). The difference in the rate of brain volume loss between weeks 24 and 96 was 23% in OPERA I (p=0.004) and 15% in OPERA II (p=0.09). In OPERA I there was no significant difference between groups in the SF-36 physical component summary score (+0.04 ocrelizumab, -0.66 interferon β -1a, p=0.22, but the difference was significant in OPERA II (+0.33 versus -0.83, p=0.04). SAEs, including infections, and nervous system disorders, were lower in the ocrelizumab group. Overall AEs were similar in the two groups, but patients receiving ocrelizumab were more likely to have infusion-related reactions (34% vs. 10%) and upper respiratory infections (15% vs. 10%).

Interferon β-1a (Avonex vs. Rebif)

Based on stakeholder interest, we also summarized data from the EVIDENCE trial comparing Avonex and Rebif. This trial was a fair quality, open-label study funded by the manufacturer of Rebif that randomized 677 patients with RRMS by the Poser criteria to two forms of interferon β-1a: 44 mcg SC TIW (Rebif) or 30 mcg IM once a week (Avonex). A blinded physician evaluated the participants for all outcomes. The baseline characteristics of trial participants are summarized in Appendix Table C2 and they were similar in both arms of the trial. Follow-up was completed for 96% of participants in both arms at 48 weeks of follow-up. The primary endpoint, proportion free of relapse at 24 weeks, was greater in the 44 mcg TIW group (75% vs. 63%, p=0.0005). The differences were similar at 48 weeks (62% vs. 52%, p=0.009). The HR for first relapse was 0.70 (95% CI 0.55-0.88, p=0.003) over the course of the study. However, the rate of relapses over 48 weeks did not differ significantly (0.54 vs. 0.64, p=0.093). There were no significant differences in confirmed disability progression sustained for 12 weeks (43 vs. 49 participants, HR 0.87, 95% CI 0.58-1.31, p=0.51) or for 24 weeks (20 vs. 28 participants, HR 0.70, 95% CI 0.39-1.25, p=0.23). The number of combined unique lesions on MRI was lower in the 44 mcg TIW group (24 vs. 37, p<0.001). These finding suggest that the 44 mcg SC TIW dosing of interferon β-1a may be more effective than the 30 mcg IM weekly dosing. However, the trial was too short to adequately address some outcomes that matter to patients (long-term disability progression). The lack of blinding of patients and treating physicians raises the possibility of both differential co-interventions and ascertainment bias, although the outcomes assessment was performed by a blinded physician. These results should be placed in the context of the full set of randomized trial results comparing Avonex to Rebif that will be discussed below as part of the network meta-analysis.

Rituximab (Rituxan)

The HERMES trial was a small, fair quality, phase II study that randomized 104 patients with RRMS in a 2:1 ratio to rituximab or placebo and followed them for 48 weeks.⁸³ The patient characteristics are summarized in Appendix Table C2. The only important difference in baseline characteristics between the two arms of the trial was a higher proportion of participants with gadolinium-

enhancing lesions in the rituximab group (36% vs. 14%, p=0.02). The primary outcome, number of gadolinium-enhancing lesions, was lower in the rituximab group (mean 0.5 vs. 5.5 lesions per patient, p<0.001). The volume of T2-weighted lesions at 36 weeks was also lower (-10.3 mm 3 vs. +123 mm 3 , p=0.004) as was the number of new gadolinium-enhancing lesions (0.2 vs. 4.5, p<0.001). The proportion of patients with relapses was lower in the rituximab group at 24 weeks (14.5% vs. 34.3%, p=0.02) and at 48 weeks (20.3% vs. 40.0%, p=0.04). The ARR was significantly lower at 24 weeks (0.37 vs. 0.84, p=0.04), but not at 48 weeks (0.37 vs. 0.72, p = 0.08). Disability progression was not reported. SAEs were similar in the two groups (13.0% vs. 14.3%) and infection-related SAEs were less common in the rituximab group (2.9% vs. 5.7%). Reactions after the first infusion were more common in the rituximab group (78% vs. 40%). This small trial suggests that anti-CD20 therapy has promise for RRMS, but larger and longer confirmatory studies are needed.

Other Head-to-Head Trials

There are several other head-to-head trials comparing new agents to one of the interferons. The TRANSFORM trial compared fingolimod to interferon β -1a 30 mcg IM every week. ⁸⁴ Fingolimod had significantly lower ARR (0.16 vs. 0.33, p<0.001), but there were no differences in disability progression. In the TENERE trial, the ARR for teriflunomide 7 mg (0.41) was significantly higher than that of teriflunomide 14 mg (0.26) and interferon β -1a 44 mcg TIW (0.22). ⁸⁵ Despite the higher relapse rates, patients rated teriflunomide better on the Treatment Satisfaction Questionnaire for Medication domains of Global Satisfaction, Convenience, and Side Effects. In the CONFIRM trial, there were no significant differences between dimethyl fumarate and glatiramer acetate for ARR, though both were more effective than placebo. ⁸⁶ They also were more effective than placebo in reducing the number of MRI findings including gadolinium-enhancing lesions, new or enlarging T2 lesions, and hypointense T1 lesions. There were no significant differences between any of the groups in confirmed disability progression sustained for 12 weeks. The only difference that was significantly lower for dimethyl fumarate was new or enlarging hyperintense lesions on T2-weighted images.

Finally, in three trials of alemtuzumab versus interferon β -1a 44 mcg TIW, alemtuzumab was consistently better for relapse reduction and sustained disability progression. The CAMMS223 phase II study was stopped early after immune thrombocytopenic purpura (ITP) developed in 3 patients and 1 of the 3 died. In that trial alemtuzumab markedly reduced disability progression (HR 0.29, p<0.001), ARR (HR 0.26, p<0.001), and decreased average disability (improved by 0.39 EDSS points in alemtuzumab group, worsened by 0.38 EDSS points in interferon β -1a group, p<0.001). MRI outcomes also were significantly better in the alemtuzumab group. AEs were more common in the alemtuzumab group including autoimmune thyroid disorders (23% vs. 3%), ITP (3% vs. 1%), and infections (66% vs. 47%). In the phase III CARE-MS I and CARE MS II trials, the reduction in relapse rates and disability progression were slightly lower, but highly significant, MRI outcomes were similar, and the pattern of increased autoimmune disease and infections were observed.

In summary, in these head-to-head trials, alemtuzumab was more effective at preventing relapses than interferon β -1a 44 mcg, but alemtuzumab was associated with an increase in autoimmune thyroid and platelet diseases and infections. Fingolimod was more effective at preventing relapses than interferon β -1a 30 mcg. Teriflunomide and dimethyl fumarate were not more effective than interferon β -1a 44 mcg and glatiramer acetate, respectively.

Previous Network Meta-Analyses

There are four published network meta-analyses of DMTs for RRMS.²⁶⁻²⁹ Fogarty and colleagues published the most recent NMA.²⁷ They included 28 RCTs in their analyses, but did not evaluate daclizumab, rituximab, or ocrelizumab. They concluded that all of the DMTs reduced the ARR compared with placebo, but there was greater uncertainty with disability progression. They also concluded that natalizumab and alemtuzumab demonstrated consistently high rankings across all outcomes, while the interferons and glatiramer acetate ranked lowest. The Cochrane review concluded that alemtuzumab, natalizumab, and fingolimod were more effective than other drugs at preventing relapses and that there was insufficient evidence about irreversible disability progression. They also highlighted the lack of evidence for efficacy beyond two years, which is very important for patients with a lifelong disease. Finally, they highlighted the poor reporting of safety data and the fact that most studies were sponsored by pharmaceutical companies, which is a known potential source of bias. The CADTH review concluded that alemtuzumab and natalizumab were the most effective DMTs followed by fingolimod and dimethyl fumarate. They concluded that the interferons, glatiramer acetate, and teriflunomide had lower efficacy. Finally, Tolley and colleagues published a NMA in 2015²⁶ that only evaluated the interferons and glatiramer acetate. They evaluated ARRs, confirmed disability progression at both 12 and 24 weeks, and safety and tolerability. They included 16 randomized trials and concluded that the interferons and glatiramer acetate demonstrated comparable efficacy and tolerability.

PPMS

Rituximab (Rituxan)

The OLYMPUS trial was a good-quality trial that randomized 439 patients with PPMS in a 2:1 ratio to two 1000 mg infusions of rituximab or placebo 14 days apart every 24 weeks and followed them for 96 weeks.⁹ The mean age of the participants was 50 years and 50% were female. The mean duration of disease was 9.1 years and 65% had received no prior therapy. The mean EDSS score was 4.8. On baseline MRI, 25% had gadolinium-enhancing lesions. Only 4 patients were lost to follow-up. There was no significant difference in the time to confirmed disability progression sustained for at least 12 weeks (HR 0.77, 30.2% for rituximab and 38.5% placebo, p=0.14), which was the primary endpoint.

For the predefined secondary endpoints, there was a significant reduction in the T2 lesion volume (p<0.001), but not in the change in brain volume (p=0.62). Additional outcomes found that patients randomized to rituximab performed significantly better on the MSFC timed 25-foot walk, but results were not significantly different for the overall MSFC, the 9-Hole peg test, paced auditory serial testing, or confirmed disability progression sustained for 24 weeks. Preplanned subgroup analyses found that rituximab significantly delayed the time to progression for patients aged < 51 years (HR 0.52, p=0.01) and in those patients with gadolinium-enhancing lesions at baseline (HR=0.41, p=0.007). SAEs were more common in the rituximab group (16.4% vs. 13.6%). In particular, infection-associated SAEs were more common with rituximab (4.5% vs. <1%). There were 3 deaths (1 in rituximab group, 2 in placebo group). The most common AEs were pruritus, flushing, headache, fatigue, chills, nausea and fever associated with the drug infusion. These reactions decreased with repeated infusions, but still occurred in 7.8% of participants receiving rituximab at the 7th infusion (compared to 5.6% in the placebo infusion group). In summary, the trial did not meet its primary endpoint, but suggested that rituximab shows promise for younger patients with PPMS who have gadolinium-enhancing lesions on MRI; additional study is required, however, to confirm rituximab's benefits in this PPMS population.

Ocrelizumab (Ocrevus)

The ORATORIO study was a good-quality study published in January 2017.90 The study randomized 732 patients ages 18-55 years with PPMS in a 2:1 ratio to two 300 mg infusions of ocrelizumab or placebo every 24 weeks and followed them for 120 weeks. The mean age of the participants was 45 years and 49% were female. The mean duration of disease was 6.5 years and 90% had received no MS therapy in the prior 2 years. The mean EDSS score was 4.7. On baseline MRI, 26% had gadolinium-enhancing lesions. Only 4 patients were lost to follow-up. Confirmed disease progression sustained for at least 12 weeks, the primary endpoint of the trial, was significantly lower in the ocrelizumab group (HR 0.76, 95% CI 0.59 - 0.98, p=0.032). Confirmed disease progression sustained for at least 24 weeks was also significantly lower in the ocrelizumab group (HR 0.75, 95% CI 0.58 - 0.98, p=0.04). As with rituximab, there was a significant reduction in the T2 lesion volume (p<0.001) and faster performance of the 25-foot walk (p=0.04). In addition, there was a significant improvement in the change in brain volume (p=0.02). There was no significant difference between groups in the SF-36 physical component summary score (-0.73 ocrelizumab, -1.11 placebo, p=0.60. SAEs were less common in the ocrelizumab group (20.4% vs. 22.2%) and infection-associated SAEs nearly identical (6.2% vs. 5.9%). There were more deaths (0.8% vs. 0.4%) and more malignancies (2.3% vs. 0.8%) in the ocrelizumab group. The most common AEs were mild to moderate reactions associated with the drug infusion. In summary, the trial demonstrated a significant 24-25% reduction in the rate of disability progression sustained at 12 and 24 weeks as well as a reduction in brain volume loss and in the rate of decline in walking speed. The difference in malignancies is concerning particularly given similar reports in patients with B-cell lymphomas treated with rituximab, but it may be a chance finding.

The relative rate reduction in relapses demonstrated for ocrelizumab in the ORATORIO study (26%) is similar to that observed for ocrelizumab in the OLYMPUS trial (23%), and may represent a class effect for anti-CD20 therapies. The OLYMPUS trial had fewer participants and shorter follow-up and thus was underpowered to detect a 20% to 25% reduction in disability progression. The ORATORIO study also enrolled a younger population, perhaps based on the subgroup analysis in OLYMPUS that demonstrated a significant reduction in disability progression in younger patients. No subgroup analyses have as yet been reported for the ORATORIO study.

Clinical Benefits

Relapse Rate

In the survey performed by the MS Coalition for this review, preventing relapses was felt to be as important to patients as preventing disability progression. Relapses take patients and their caregivers away from work, school, and other important life responsibilities, and symptoms can last for months. Twenty head-to-head studies, five of which also included a placebo arm, and an additional 13 placebo-controlled studies contributed results to the NMA of ARR (see Appendix Figure D1 for the Network Diagram and Appendix Table C4 for the results from each trial contributing to the NMA).

The ARR in the placebo group ranged from 0.34 to 1.38 relapses per year across studies. As noted earlier, there is a trend towards lower relapse rates in the placebo groups in more recent trials compared with earlier trials. For example, the ARR in the placebo group of the 5 trials published before 2000 ranged from 0.82 to 1.38^{13,79,91-94}, while those published since 2010 ranged from 0.34-0.50.^{80,81,85,86,95-100} The explanation for the change in ARR over time has been studied, but no conclusive reason has been identified.^{21,22,24,25} Possible explanations include the age of participants, the number of pre-enrollment relapses in the prior 1 to 2 years, the length of time since their first symptoms of MS, the use of differing diagnostic criteria for MS, the length of follow-up in the trials, and the country of origin for patients enrolled in the trials. None of these factors, however, fully explain the observed trend.

The average age of the study participants was about 36 years across the trials and approximately 70% were women (Appendix Table C2). The participants were predominantly white (~90%). The average duration of MS ranged from 1.1 to 10.5 years across the trials, but most averaged 5-6 years. Their mean EDSS grade at baseline ranged from 2.0 to 3.0 and the mean number of relapses in the prior year ranged from 1.0 to 2.2. Finally, the average number of gadolinium-enhancing lesions on MRI, which was not reported in 17 of the trials, ranged between 1.3 and 4.3.

In the early trials of the interferons and glatiramer acetate the DMTs reduced the ARR by 20% to 40% compared to placebo, with the exception of the early trial by Bornstein and colleagues, published in 1987, which reported a 76% reduction in ARR with glatiramer acetate. The newer

generation drugs, such as dimethyl fumarate, fingolimod, rituximab, daclizumab, ocrelizumab, and natalizumab all report greater than a 50% reduction in ARR compared to placebo. 31,80,81,83,86,98 The one exception is teriflunomide, which reduced ARR by 20%-40% compared to placebo. 96,99 . There are no placebo controlled trials of alemtuzumab; all three of the alemtuzumab randomized trials used interferon β -1a 44 mcg as an active control.

In our NMA, alemtuzumab, natalizumab, and ocrelizumab had the greatest reduction in ARR (approximately 70% reduction compared to placebo). The 95% credible interval for the first two drugs did not include 1 when compared to any of the other drugs with the exception of rituximab (Table 5). Fingolimod, daclizumab, rituximab, and dimethyl fumarate were the next most effective (47% to 54% reduction). The interferons, glatiramer acetate 20 mg, and teriflunomide were less effective (17% to 37% reduction). All of the drugs were significantly better than placebo. A forest plot summarizing the relative risks and 95% credible intervals for each drug compared to placebo is presented below (Figure 3).

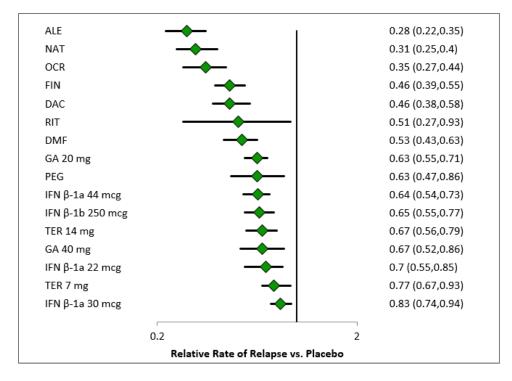


Figure 3. Forest Plot of DMTs vs. Placebo for Annualized Relapse Rate

Legend: The diamonds represent the point estimate from the NMA for the relative risk of relapse rate for each drug compared to placebo and the horizontal bars represent the 95% credible intervals. Any numbers less than 1 indicate a reduction in the relapse rate compared to placebo.

The forest plot graphically demonstrates the superiority of alemtuzumab, natalizumab, and ocrelizumab to the other agents. The study of rituximab was underpowered compared to the other studies (much wider credible intervals, greater uncertainty), but the point estimate was similar to

that of fingolimod, daclizumab, and dimethyl fumarate. The interferons, glatiramer acetate, and teriflunomide appear to be less effective at reducing relapse rates than the other drugs. Nevertheless, interferon β -1a 30 mcg, which was the least effective drug in the NMA, is still superior to placebo.

Table 5 below includes the complete set of pairwise comparisons for all drugs included in the network. Comparisons with statistically-significant results are highlighted in bold. Consistent with the forest plot presented previously, significant reductions in relapse rate were generally observed for the most effective agents versus the next most-effective group, and again for the "middle" group in comparison to the interferons, glatiramer acetate, and teriflunomide.

We compared our NMA random-effects estimates to those obtained using a fixed-effects model, those from a direct meta-analysis, and performed meta-regression to evaluate the effect of trial-level baseline patient characteristics (duration of MS, EDSS score at baseline, relapses in the prior year) on the NMA results (Appendix Tables D1). There were no direct meta-analysis results for alemtuzumab or ocrelizumab because neighther drug has been studied in placebo controlled trials. The remaining sensitivity analyses produced values and rank ordering of DMTs that were similar to the base-case estimates.

We also performed subgroup analyses to evaluate the effect of prior treatment, study size, the criteria used to define clinically-definite MS (Poser vs. McDonald criteria), study quality, length of follow-up, and excluding open label trials and there were no important changes in the ordering of drugs or the estimated efficacy versus placebo (Appendix Table D2).

The results from our NMA for ARR are in line with those reported in four earlier NMAs (see Table 6 below). ²⁶⁻²⁹ The Cochrane NMA estimated the relative rates over both 12- and 24-month follow-up periods. The Fogarty NMA is the most recent, so their results are most similar to those in the ICER NMA.

Table 5. League Table for Annualized Relapse Rate, Base Case

ALE																
0.92 (0.63-1.23)	NAT															
0.82 (0.61-1.05)	0.89 (0.65-1.29)	OCR		_												
0.61 (0.45-0.80)	0.67 (0.51-0.91)	0.76 (0.56-1.01)	FIN													
0.61 (0.44-0.81)	0.67 (0.49-0.93)	0.75 (0.54-1.01)	0.99 (0.76-1.29)	DAC												
0.56 (0.29-1.08)	0.62 (0.32-1.22)	0.69 (0.36-1.35)	0.91 (0.48-1.75)	0.93 (0.48-1.78)	RIT											
0.54 (0.39-0.71)	0.59 (0.44-0.81)	0.66 (0.48-0.90)	0.88 (0.67-1.13)	0.88 (0.67-1.18)	0.97 (0.50-1.83)	DMF										
0.45 (0.35-0.57)	0.49 (0.39-0.66)	0.55 (0.43-0.71)	0.74 (0.60-0.91)	0.74 (0.59-0.94)	0.79 (0.43-1.51)	0.84 (0.68-1.04)	GA 20 mg									
0.45 (0.30-0.64)	0.50 (0.34-0.72)	0.56 (0.37-0.80)	0.74 (0.51-1.02)	0.74 (0.51-1.05)	0.80 (0.39-1.56)	0.83 (0.57-1.18)	1 .00 (0.71-1.36)	PEG								
0.44 (0.37-0.53)	0.49 (0.38-0.66)	0.55 (0.45-0.67)	0.73 (0.59-0.91)	0.73 (0.58-0.95)	0.79 (0.42-1.50)	0.83 (0.66-1.06)	0.99 (0.85-1.16)	0.98 (0.73-1.42)	IFNß-1a 44 mcg							
0.44 (0.33-0.56)	0.48 (0.37-0.65)	0.54 (0.41-0.71)	0.71 (0.57-0.90)	0.72 (0.57-0.93)	0.77 (0.41-1.47)	0.82 (0.61-1.04)	0.97 (0.83-1.13)	0.97 (0.71-1.39)	0.99 (0.81-1.18)	IFNß-1b 250 mcg						
0.43 (0.31-0.56)	0.47 (0.35-0.63)	0.52 (0.39-0.69)	0.69 (0.55-0.88)	0.70 (0.54-0.91)	0.76 (0.39-1.44)	0.79 (0.61-1.02)	0.95 (0.76-1.15)	0.95 (0.68-1.36)	0.96 (0.76-1.17)	0.97 (0.77-1.21)	TER 14 mg					
0.42 (0.29-0.59)	0.46 (0.33-0.67)	0.52 (0.36-0.74)	0.69 (0.51-0.94)	0.69 (0.50-0.97)	0.75 (0.39-1.47)	0.79 (0.57-1.08)	0.94 (0.70-1.24)	0.94 (0.64-1.41)	0.95 (0.70-1.26)	0.97 (0.71-1.30)	1.00 (0.74-1.35)	GA 40 mg				
0.41 (0.3-0.54)	0.45 (0.34-0.63)	0.5 (0.38-0.68)	0.66 (0.52-0.89)	0.67 (0.51-0.91)	0.73 (0.38-1.42)	0.76 (0.58-1.02)	0.91 (0.72-1.15)	0.91 (0.65-1.34)	0.92 (0.74-1.14)	0.94 (0.73-1.21)	0.96 (0.75-1.27)	0.96 (0.70-1.36)	IFNß-1a 22 mcg			
0.37 (0.27-0.48)	0.40 (0.30-0.53)	0.45 (0.33-0.59)	0.59 (0.46-0.75)	0.60 (0.46-0.77)	0.65 (0.34-1.22)	0.68 (0.52-0.86)	0.82 (0.65-0.98)	0.82 (0.58-1.15)	0.83 (0.65-0.99)	0.84 (0.65-1.03)	0.86 (0.72-1.01)	0.86 (0.63-1.15)	0.89 (0.67-1.14)	TER 7 mg		
0.34 (0.26-0.43)	0.37 (0.29-0.49)	0.42 (0.32-0.53)	0.56 (0.46-0.67)	0.56 (0.46-0.68)	0.61 (0.32-1.14)	0.63 (0.51-0.79)	0.76 (0.65-0.87)	0.76 (0.56-1.06)	0.77 (0.65-0.88)	0.78 (0.65-0.96)	0.80 (0.66-0.98)	0.80 (0.61-1.06)	0.84 (0.65-1.04)	0.94 (0.77-1.15)	IFNß-1a 30 mcg	
0.28 (0.22-0.35)	0.31 (0.25-0.40)	0.35 (0.27-0.44)	0.46 (0.39-0.55)	0.46 (0.38-0.58)	0.51 (0.27-0.93)	0.53 (0.43-0.63)	0.63 (0.55-0.71)	0.63 (0.47-0.86)	0.64 (0.54-0.73)	0.65 (0.55-0.77)	0.67 (0.56-0.79)	0.67 (0.52-0.86)	0.70 (0.55-0.85)	0.77 (0.67-0.93)	0.83 (0.74-0.94)	Placebo

Legend: The DMTs are arranged from most effective (top left) to least effective (bottom right) Each box represents the estimated rate ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in bold signify that the 95% credible interval does not contain 1

Table 6. Rate Ratio Estimates for ARR in Network Meta-Analyses of DMTs Compared to Placebo for RRMS

Drug	Cochrane 12-month	Cochrane 24-month	CADTH	Tolley	Fogarty	ICER
Interferon β-1a 30 mcg (Avonex)	0.93	0.89	0.87	0.74	0.85	0.83
Interferon β-1b 250 mcg (Betaseron)	0.98	0.85	0.67	0.68	0.67	0.65
Glatiramer acetate (Copaxone) 20 QD 40 TIW	0.80	0.83	0.67	0.64	0.65 0.65	0.63 0.67
Interferon β-1a (Rebif) 22 mcg 44 mcg	0.87	0.86	0.71 0.67	0.71 0.66	0.72 0.67	0.70 0.64
Peginterferon β-1a (Plegridy) Daclizumab (Zinbryta)	0.89 0.79	NR NR	NR NR	0.65 NR	0.64 NR	0.63 0.46
Fingolimod (Gilenya) Teriflunomide (Aubagio)	0.63 0.84	0.72 0.88	0.44	NR NR	0.47	0.46
7 mg 14 mg	0.04	0.88	0.69 0.68	IVIX	0.67	0.77 0.67
Dimethyl fumarate (Tecfidera) Natalizumab (Tysabri)	0.78 0.56	0.89 0.56	0.50 0.32	NR NR	0.50 0.31	0.53 0.31
Alemtuzumab (Lemtrada) Ocrelizumab (Ocrevus)	0.40 NR	0.46 NR	0.30 NR	NR NR	0.31 NR	0.28 0.35
Rituximab (Rituxan)	NR	NR	NR	NR	NR	0.51

NR: not reported

Disability Progression

A primary long-term goal for patients is to avoid progressive and permanent disability as this has the greatest impact on their ability to work, participate in family life, and contribute to society. Ideally, studies would measure disability progression over at least five years. ¹⁵ Unfortunately, all but two of the studies were two years or less in duration and many studies did not report the preferred measure: the number of patients with confirmed disability progression sustained for a minimum of 24 weeks. We identified 27 trials that reported dichotomous results for disability progression, including 16 head-to-head studies (4 of which also had a placebo arm) and an additional 11 placebo-controlled studies, all of which contributed results to the NMA of disability progression (see Appendix Figure D2 for the Network Diagram and Appendix Tables C5-C6 for the results from each trial contributing to the NMA). Six studies did not contribute data to the NMA of disability progression because they did not report these data (Appendix Tables C5 and C6 specify which trials were included or excluded from the base-case analysis).

Studies reported confirmed disability progression sustained for 12 or 24 weeks (Appendix Tables C6 and C5), and as noted earlier, disability progression sustained for 24 weeks was the preferred outcome. In studies the reported both outcomes, the relative risk for disability progression was usually lower for the 24-week outcome than for the 12-week outcome. Examples include the FREEDOMS study of fingolimod versus placebo (RR 0.63 for confirmed disability progression sustained for 24 weeks vs. 0.70 for 12 weeks), the CONFIRM study of dimethyl fumarate versus placebo (RR 0.62 and 0.79), the CAMMS223 study of alemtuzumab versus interferon β -1a 44 mcg (RR 0.25 and 0.42) and the DECIDE study of daclizumab versus interferon β -1a 30 mcg (RR 0.79 and 0.84). For the NMA, we used the number of patients with confirmed disability progression at 24 weeks as the primary outcome, but used the 12-week outcome when the study did not report the number of patients with confirmed progression at 24-weeks, which may underestimate the true benefit of DMTs that lack these data (i.e., interferon β -1a 22 mg, teriflunomide 7/14 mg, dimethyl fumarate, glatiramer acetate 40 mg, peginterferon β -1a).

The incidence of disability progression was lower than that of relapses, so the confidence intervals for the relative risk of disability progression are wider than those of the rate ratios for ARR. The observed reduction in disability progression ranged from 19% to 37% for the interferons and glatiramer acetate compared to placebo and 14% to 58% for the newer DMTs, though with widely overlapping confidence intervals for most agents.

In our NMA, ocrelizumab and alemtuzumab had the greatest reduction in disability progression (53% to 58% reduction compared to placebo respectively), closely followed by daclizumab (46%) and natalizumab (44%). Dimethyl fumarate, peginterferon β -1a, interferon β -1b 250 mcg, and fingolimod were next (32% to 38%). Teriflunomide, glatiramer acetate, and the remaining interferons were less effective (14% to 28%). Four of the drugs were not significantly better than placebo (interferon β -1a 30 mcg, interferon β -1a 22 mcg, teriflunomide 7 mg, and glatiramer acetate 40 mg; credible interval contains 1.0). In the only trial of glatiramer acetate 40 mg (GALA trial), there was a non-significant trend towards greater disability progression in the glatiramer acetate 40 mg group. It is unlikely that glatiramer acetate 40 mg increases disability progression. Indeed, in the three-year open-label extension of the same GALA trial, there was a trend towards a reduction in disability in the glatiramer acetate 40 mg arm, although this also was not statistically significant (HR 0.76, 95% CI 0.55-1.04, p=0.09). In the only trial of glatiramer although this also was not statistically significant (HR 0.76, 95% CI 0.55-1.04, p=0.09).

A forest plot summarizing the relative risks and 95% credible intervals for each drug compared to placebo is below (Figure 4). The credible intervals for most of the drugs are quite wide, highlighting the limitations of indirect evidence to distinguish one drug or set of drugs from the others. This also reflects the small number of patients with disability progression due to the relatively short follow-up and small size of most of the trials. In the league table (Table 7), which compares each DMT to the others, alemtuzumab, ocrelizumab, and daclizumab, are significantly better than at least one other DMT aside from glatiramer acetate 40 mg (interferon β -1a 30 mcg).

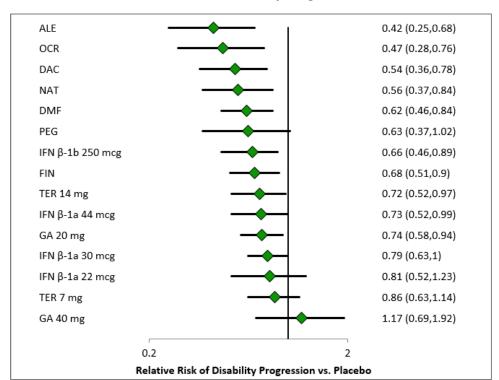


Figure 4. Forest Plot of DMTs vs. Placebo for Disability Progression

Legend: The diamonds represent the point estimate from the NMA for the relative risk of disability progression for each drug compared to placebo and the horizontal bars represent the 95% credible intervals. Any numbers less than 1 indicate a reduction in disability progression compared to placebo.

The credible intervals for each of the drugs in the EDSS progression forest plot above are wider than the corresponding credible intervals for relapse rates. Thus, it is difficult to distinguish between the drugs based on disability progression with a high level of certainty. Alemtuzumab and ocrelizumab appear to be most effective, but the relative risk for disability progression is not statistically significant for alemtuzumab compared to ocrelizumab, daclizumab, natalizumab, dimethyl fumarate, peginterferon β -1a, interferon β -1b 250 mcg, fingolimod, and teriflunomide 14 mg (see Table 7). Alemtuzumab is superior to interferon β -1a (22, 44, and 30 mcg doses), teriflunomide 7 mg, and glatiramer acetate (20 and 40 mg doses).

Table 7 below includes a complete set of pairwise comparisons for all agents included in the network.

Table 7. League Table for Disability Progression, Base Case

ALE															
0.91 (0.54-1.51)	OCR														
0.78 (0.43-1.42)	0.86 (0.47-1.60)	DAC		_											
0.76 (0.39-1.43)	0.84 (0.43-1.59)	0.97 (0.54-1.7)	NAT												
0.68 (0.38-1.17)	0.75 (0.41-1.31)	0.87 (0.53-1.38)	0.89 (0.53-1.49)	DMF											
0.67 (0.33-1.36)	0.74 (0.37-1.51)	0.86 (0.45-1.64)	0.88 (0.47-1.73)	0.99 (0.56-1.83)	PEG										
0.64 (0.37-1.14)	0.71 (0.40-1.27)	0.83 (0.52-1.33)	0.85 (0.51-1.47)	0.95 (0.64-1.49)	0.96 (0.53-1.77)	IFNß-1b 250 mcg		_							
0.62 (0.35-1.07)	0.68 (0.38-1.20)	0.79 (0.50-1.24)	0.82 (0.49-1.36)	0.91 (0.61-1.38)	0.92 (0.51-1.63)	0.97 (0.62-1.43)	FIN								
0.59 (0.33-1.04)	0.65 (0.36-1.17)	0.76 (0.46-1.22)	0.78 (0.46-1.32)	0.87 (0.56-1.35)	0.88 (0.48-1.57)	0.92 (0.57-1.41)	0.95 (0.63-1.45)	TER 14 mg							
0.58 (0.40-0.82)	0.64 (0.44-0.92)	0.75 (0.46-1.17)	0.77 (0.46-1.30)	0.86 (0.57-1.32)	0.86 (0.47-1.56)	0.90 (0.59-1.35)	0.94 (0.62-1.42)	0.99 (0.63-1.54)	IFNß-1a 44 mcg						
0.57 (0.34-0.92)	0.63 (0.37-1.04)	0.73 (0.47-1.10)	0.75 (0.46-1.22)	0.84 (0.60-1.19)	0.85 (0.47-1.47)	0.89 (0.63-1.17)	0.92 (0.64-1.32)	0.97 (0.65-1.44)	0.98 (0.70-1.35)	GA 20 mg					
0.53 (0.32-0.86)	0.59 (0.35-0.97)	0.68 (0.48-0.94)	0.70 (0.43-1.12)	0.79 (0.54-1.13)	0.79 (0.45-1.36)	0.83 (0.57-1.15)	0.86 (0.62-1.18)	0.90 (0.61-1.32)	0.92 (0.65-1.27)	0.93 (0.71-1.23)	IFNß-1a 30 mcg		_		
0.52 (0.29-0.90)	0.57 (0.32-1.01)	0.67 (0.38-1.15)	0.69 (0.38-1.25)	0.77 (0.46-1.29)	0.78 (0.40-1.47)	0.81 (0.47-1.34)	0.84 (0.51-1.40)	0.88 (0.52-1.50)	0.89 (0.58-1.38)	0.91 (0.58-1.47)	0.98 (0.62-1.56)	IFNß-1a 22 mcg			
0.49 (0.28-0.86)	0.54 (0.30-0.95)	0.63 (0.39-1.01)	0.65 (0.39-1.08)	0.73 (0.48-1.11)	0.73 (0.40-1.30)	0.77 (0.48-1.16)	0.80 (0.53-1.19)	0.83 (0.61-1.14)	0.85 (0.55-1.30)	0.86 (0.59-1.27)	0.92 (0.64-1.35)	0.95 (0.56-1.58)	TER 7 mg		
0.36 (0.18-0.73)	0.40 (0.20-0.81)	0.46 (0.24-0.88)	0.48 (0.25-0.93)	0.54 (0.30-0.98)	0.54 (0.26-1.10)	0.56 (0.30-1.02)	0.58 (0.33-1.06)	0.61 (0.34-1.12)	0.62 (0.34-1.13)	0.63 (0.36-1.13)	0.68 (0.39-1.21)	0.69 (0.36-1.36)	0.73 (0.41-1.34)	GA 40 mg	
0.42 (0.25-0.68)	0.47 (0.28-0.76)	0.54 (0.36-0.78)	0.56 (0.37-0.84)	0.62 (0.46-0.84)	0.63 (0.37-1.02)	0.66 (0.46-0.89)	0.68 (0.51-0.90)	0.72 (0.52-0.97)	0.73 (0.52-0.99)	0.74 (0.58-0.94)	0.79 (0.63-1.00)	0.81 (0.52-1.23)	0.86 (0.63-1.14) 5% credible	1.17 (0.69-1.92)	Placebo

Legend: The DMTs are arranged from most effective (top left) to least effective (bottom right) Each box represents the estimated rate ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in bold signify that the 95% credible interval does not contain 1.

We performed subgroup analyses to evaluate the effect of study quality, length of follow-up, trial size, the criteria used to define clinically-definite MS (Poser vs. McDonald), and the definition of confirmed disability progression (12-week, 24-week) (Appendix Table D5-D6). There were several DMTs (interferon β -1a 44 mcg, alemtuzumab, ocrelizumab) with substantial changes in the summary estimates for the relative risk for disability progression in the subgroup analysis of trials using the McDonald criteria for MS. The summary relative risk for interferon β -1a 44 mcg increased from 0.73 to a non-significant 1.15 under the McDonald criteria. This is due to the exclusion of the earlier placebo controlled trials that demonstrated the effectiveness of interferon β -1a 44 mcg. This change also affected the estimates for alemtuzumab and ocrelizumab because the phase III trials of the two drugs were head-to-head trials with interferon β -1a 44 mcg. When open-label trials are excluded, the estimate for alemtuzumab substantially improved (RR 0.19 instead of 0.42). These differences may represent chance findings because of the small numbers of trials in the network for each drug, but add uncertainty to comparisons of older trials that used the Poser diagnostic criteria to the results of trials that used newer criteria to recruit participants.

We also performed meta-regression to evaluate the effect of trial-level baseline patient characteristics (duration of MS, EDSS score at baseline, relapses in the prior year) on the NMA results. There were no important changes identified (Appendix Table D5), although there were some small changes in the ordering of DMTs. For example, daclizumab and natalizumab sometimes switched rank order.

The results from our NMA for disability progression are similar to those reported in four earlier NMAs despite somewhat different definitions of disability progression (see Table 8 below). 26-29 The Cochrane and CADTH NMAs used confirmed disability progression sustained at 24 weeks for their analyses. 28,29 Tolley et al. and Fogarty et al. reported separate analyses for confirmed disability progression sustained at 12 weeks and 24 weeks. As described earlier, our analysis preferentially used confirmed disability progression sustained at 24 weeks, but included confirmed disability progression sustained at 12 weeks when the preferred outcome was not available. There are modest differences which reflect the different approaches used for the analysis (frequentist versus Bayesian, the choice of outcomes, and the set of included studies). The Cochrane review was done in 2014 and is the only NMA that used a frequentist approach. CADTH included fewer trials because they reviewed DMTs that were approved in Canada at the time of the review and it is the oldest of the NMAs (2013). The Tolley analysis limited studies to the interferons and glatiramer acetate. The Fogarty NMA was the most recent NMA so its results are generally closer to the ICER results for relapses because many of the same trials were included in both NMAs. The estimates for disability progression differ by definition of confirmed disability progression (12 versus 24 weeks).

Table 8. Relative Risk Estimates for Disability Progression in Network Meta-Analyses of DMTs Compared to Placebo for RRMS

Drug	Cochrane	CADTH	Tolley 12-week	Tolley 24-week	Fogarty 12-week	Fogarty 24-week	ICER 24/12
Interferon β-1a 30 mcg	0.93	0.87	0.79	0.81	0.81	0.71	0.79
(Avonex)							
Interferon β-1b 250 mcg	0.79	0.74	0.82	0.54	0.83	0.31	0.66
(Betaseron)							
Glatiramer acetate (Copaxone)							
20 mg QD	0.77	0.83	0.82	0.70	0.81	0.75	0.74
40 mg TIW							1.17
Interferon β-1a (Rebif)	0.86						
22 mcg		0.89	0.77	NR	0.81	NR	0.81
44 mcg		0.84	0.69	0.78	0.72	0.77	0.73
Peginterferon β-1a (Plegridy)	0.89	NR	NR	0.43	0.62	0.45	0.63
Daclizumab (Zinbryta)	0.79	NR	NR	NR	NR	NR	0.54
Fingolimod (Gilenya)	0.86	0.76			0.75	0.69	0.68
Teriflunomide (Aubagio)	0.87						
7 mg		0.85	NR	NR	0.72	NR	0.86
14 mg		0.80	NR	NR	NR	NR	0.72
Dimethyl fumarate (Tecfidera)	0.80	0.73	NR	NR	0.62	0.65	0.62
Natalizumab (Tysabri)	0.64	0.67	NR	NR	0.55	0.46	0.56
Alemtuzumab (Lemtrada)	0.35	0.56	NR	NR	0.32	0.41	0.42
Ocrelizumab (Ocrevus)	NR	NR	NR	NR	NR	NR	0.47
Rituximab (Rituxan)	NR	NR	NR	NR	NR	NR	NR

NR: not reported

It is worth highlighting again the many sources of uncertainty that underlie the results of the NMA. The confidence intervals provide one measure of uncertainty, but don't fully reflect the uncertainty introduced by the assumptions that underlie the analysis. As we noted earlier, the populations in the trials vary somewhat, with the clearest difference represented by the decrease in the ARR over time. Patients at lower risk for relapses are now being included in the trials. In addition, the diagnostic criteria for MS have evolved over time; the trials use different definitions for relapses and confirmed disability over time; MRI technology has improved; and the individual trials vary in quality. All of these factors can introduce inconsistency in the network. These concerns apply to both NMAs (relapse rates, disability progression).

MRI Outcomes

MRI findings are used in the diagnosis and management of MS; many clinicians also feel they have the potential to serve as surrogate outcomes for relapse rates and disability progression. It is, however, difficult to compare MRI findings across trials because of variability in how MRI measures

were performed and reported. Many of the early trials did not report MRI outcomes, and the trials that did reported a variety of outcomes, including: gadolinium-enhancing T1 lesions, new T2 lesions, new and expanding T2 lesions, the volume of T2 lesions, the cumulative total number for lesions, and brain volume changes. In some studies, MRIs were performed monthly, while in others they were performed annually or not at all. Study centers used different machines, with different protocols for image acquisition and processing, all of which can change the appearance of lesions. There is also a lack of data from trials demonstrating that MRI changes predict patient outcomes.

Sormani and colleagues conducted a comprehensive meta-analysis of MRI outcomes in 54 comparative randomized trials in more than 25,000 patients with RRMS, which updated a prior meta-analysis. ^{101,102} The authors highlighted a strong correlation between the ratio of the average number of MRI lesions in the experimental and control groups with the ratio of the ARR in the experimental and control groups (R²=0.74). The investigators did not rank order the studied drugs based on this analysis; rather, they argued that regulatory agencies should allow the use of MRI outcomes as a surrogate for relapse rates in RRMS trials, which would allow for shorter, less expensive trials and the more rapid approval of new therapies. They acknowledged the possibility of the ecological fallacy in this analysis, but pointed to examples of clinical trials that performed analyses at the individual patient level that reported about 60% of the drug's effect on relapse rates was mediated through MRI findings.

In contrast, the evidence that MRI findings predict disability progression is relatively weak. For example, in the 16-year follow-up of the pivotal interferon β -1b trial, MRI changes during the trial explained none of the variability in disability progression. MRI technology has evolved significantly since the start of that trial, but validation of the clinical utility of a standardized approach to MRI assessment in MS remains a work in progress.

Quality of Life

Quality of life is worse in patients with MS compared to age- and sex-matched individuals in the general population. ^{18,19} Quality of life correlates with EDSS scores: as EDSS scores increase, quality of life declines. In general, studies of DMTs for MS have focused on reducing relapses and disability progression, not quality of life. The depression, fatigue, musculoskeletal, and urinary symptoms that patients with MS experience are usually managed by other interventions. Treatments for depression in MS include conventional antidepressant medications, cognitive behavioral therapy, and mindfulness. Treatments for fatigue include amantadine, methylphenidate, and modafinil. Physical therapy, anti-spasticity drugs, medical devices, and botulinum toxin are all employed to help address musculoskeletal and urologic needs. At high-quality MS centers, multidisciplinary teams employ multiple modalities to help improve these outcomes.

Quality of life outcomes were sparsely reported in the pivotal randomized trials of DMTs. Trials reporting QoL outcomes used a variety of instruments including the European Quality of Life 5

Dimensions (EQ-5D) Index and Visual Analog Scale, the Short Form 12 and 36 questionnaires (SF-12, SF-36), the Multiple Sclerosis Impact Scale (MSIS-29), the Beck Hopelessness scale, the Center for Epidemiologic Studies depression mood scale, the Global Health Questionnaire, the Treatment Satisfaction Questionnaire, and the Fatigue Impact Scale. The studies that reported outcomes using these instruments are summarized in Table 9 below. The measures that were statistically significant are noted with an asterix. No one measure was used consistently across the trials. The most commonly reported measures were the EQ-5D and the SF-36. Most of the trials reporting SF-36 results found significant improvements in the Physical Component Summary Scale (PCS), but not the Mental Component Summary Scale. The same trend appears on the MSIS-29, though there are fewer studies. Thus, the primary quality of life benefits from the DMTs appear to be physical and may reflect changes in level of disability. The few trials that reported fatigue and depression measures did not find consistent improvements with DMTs compared to placebo.

Since there was no quality of life measure used consistently in the trials, no summary estimates or comparisons across DMTs are possible. The magnitude of the benefit, when found, was generally small. For example, in the AFFIRM study, 25% of patients randomized to natalizumab had a clinically important improvement of the PCS subscale of the SF-36 compared to 17% of patients randomized to placebo; 18% of patients randomized to natalizumab had a clinically important worsening of the PCS compared to 25% of patients randomized to placebo.

Table 9. Patient Reported and Quality of Life Outcomes

	GA 20 mg	IFN β-1a 22, 44 mcg	PEG	FIN	TER 7, 14 mg	DMF	DAC	NAT	ALE	OCR
EQ-5D Index	CONFIRM		ADVANCE	FREEDOMS II	TEMSO	CONFIRM	SELECT*		CARE MS I	
						DEFINE	DECIDE*		CARE MS II	
EQ-5D VAS			ADVANCE	FREEDOMS II		DEFINE*	SELECT*		CARE MS I	
							DECIDE*		CARE MS II*	
SF-36	CONFIRM				TOWER	CONFIRM		AFFIRM	CARE MS I	OPERA I
	- PCS*				- PCS 7, 14	- PCS*		- PCS*	- PCS	- PCS
	- MCS				- MCS 7, 14*	- MCS		- MCS*	- MCS	OPERA II
						DEFINE			CARE MS II	- PCS*
						- PCS*			- PCS*	ORATORIO
						- MCS			- MCS	- PCS
SF-12			ADVANCE				SELECT*			
							DECIDE			
MSIS-29			ADVANCE				SELECT			
							Physical*			
							Mental			
							DECIDE			
							Physical*			
							Mental*			
FIS				FREEDOMS II	TEMSO					
					TENERE					
					7*, not 14 TOWER					
DDIMALIC				EDEED ON AC II	IOWER					
PRIMUS				FREEDOMS II						
Beck HS		PRISMS								
CES-D		PRISMS								
GHQ		PRISMS								
TSQM					TENERE*					
GWB VAS	CONFIRM*					CONFIRM* DEFINE*		AFFIRM*		
FAMS									CARE MS I*	
									CARE MS II*	

^{*} p<0.05

EQ-5D: European Quality of Life 5 Dimensions; VAS: Visual Analog Scale; SF-36: Short Form 36; PCS: Physical Component Summary; MCS: Mental Component Summary; SF-12: Short Form 12; MSIS-29: xxx; MSQQL 54: Multiple Sclerosis Quality of Life 54; FIS: Fatigue Impact Scale; SIP: Sickness Impact Profile; PRIMUS: Patient Reported Indices in Multiple Sclerosis; Beck HS: Beck Hopelessness Scale; CES-D: Center for Epidemiologic Studies Depression Scale; GHQ: Global Health Questionnaire; TSQM: Treatment Satisfaction Questionnaire for Medication; GWB VAS: Global Well Being Visual Analog Scale; FAMS: Functional Assessment of Multiple Sclerosis.

Harms

The harms of the DMTs are summarized in Table 10. In the randomized trials, specific SAEs were generally uncommon (<1% of treated patients) and not statistically different from the control group, whether active or placebo. For non-serious AEs, flu-like symptoms were more common in patients treated with interferons, injection site reactions were more common for all of the injectable agents, and infusion reactions were more common for the infused agents. Fingolimod has first dose cardiac effects that must be monitored. However, it is the less common, more serious AEs that cause the greatest concerns for both patients and their treating providers.

Table 10. Harms of DMTs

Drug (Brand name)	Prug (Brand name) Major safety concerns		
Subcutaneous injections			1
Interferon β-1a 30 mcg	Depression, suicide, psychosis, liver toxicity, seizures, allergic	4%	14%
(Avonex)	reactions, CHF, \downarrow peripheral blood counts, thrombotic		
	microangiopathy, flu-like symptoms are common (49%)		
Interferon β-1b 250 mcg	Liver toxicity, allergic reactions, depression, suicide, CHF, injection	6%	11%
(Betaseron, Extavia)	site necrosis (4%), leukopenia, thrombotic microangiopathy, flu-		
	like symptoms are common (57%)		
Glatiramer acetate	Post-injection reaction (16%), transient chest pain (13%),	3%	13%
(Copaxone, Glatopa)	lipoatrophy, skin necrosis, injection site reactions		
Interferon β-1a 22/44	Depression, suicide, livery injury, allergic reactions, ↓ peripheral	5%	16%
mcg	blood counts, thrombotic microangiopathy, seizures, injection site		
(Rebif)	reactions common (~90%), injection site necrosis (3%), flu-like		
	symptoms are common (59%)		
Peginterferon β-1a	Peginterferon β-1a Liver toxicity, depression, suicide, seizures, allergic reactions, CHF,		11%
(Plegridy)	↓ peripheral blood counts, thrombotic microangiopathy, flu-like		
	symptoms are common (47%)		
Daclizumab	↑ risk of infection and skin reactions. Hypersensitivity reactions,	15%	22%
(Zinbryta)	depression, and suicide. Boxed warning: significant hepatic injury		
	(0.7%), autoimmune hepatitis (0.3%), other immune mediated		
	disorders. Serious immune-mediated reactions in 5% of patients.		
	Only available through REMS .*		
Oral agents			
Fingolimod	1 st dose bradycardia, ↑ risk of serious infection, PML, macular	12%	10%
(Gilenya)	edema, PRES, \downarrow respiratory function (\downarrow FEV1), liver toxicity, \uparrow BP,		
	basal cell carcinoma (2%). REMS requirement lifted in late 2016.*		
Teriflunomide	Teriflunomide Boxed warning for hepatotoxicity (including fatal liver failure) and		13%
(Aubagio)	teratogenicity. \downarrow WBC, \uparrow risk of infection, peripheral neuropathy		
	(1.4 – 1.9%); ↑ BP (3-4%). Hair thinning.		

Drug (Brand name)	Major safety concerns		SAEs
Dimethyl fumarate	Anaphylaxis, angioedema, PML, ↓ WBC, liver injury, flushing (40%)	14%	18%
(Tecfidera)			
Intravenous infusions			
Natalizumab	Boxed warning for PML. ↑ risk for herpes encephalitis and	6%	19%
(Tysabri)	meningitis, liver toxicity, hypersensitivity (including anaphylaxis)		
	reactions, ↑ risk of infection. Only available through REMS.*		
Alemtuzumab	Boxed warning for serious (sometimes fatal) autoimmune	2%	33%
(Lemtrada)	conditions such as ITP, life-threatening infusion reactions, ↑ risk		
	of malignancies.		
	Infusion reactions (92%), rash (53%), lymphopenia (99.9%). Only		
	available through REMS .*		
Ocrelizumab	It is unknown if there will be a Boxed Warning as ocrelizumab is	4%	7%
(Ocrevus)	not yet FDA approved. Risk of infection, possible ↑ risk for PML		
	(due to similarity in mechanism to rituximab and ofatumumab) ²⁰		
Rituximab	Boxed warning for fatal infusion reactions within 24 hours of	4%	13%
(Rituxan)	infusion, severe mucocutaneous reactions (including fatalities),		
	HBV reactivation, PML (all for non-MS indications). ↑ risk of		
	infection, ↑ risk of cardiac arrhythmia, bowel obstruction,		
	cytopenias		

BP: blood pressure, CHF: congestive heart failure, D/C rates: discontinuation due to adverse events, FEV1: forced expiratory volume in 1 second, HBV: hepatitis B virus, ITP: idiopathic thrombocytopenic purpura, PRES: posterior reversible encephalopathy syndrome, PML: progressive multifocal leukoencephalopathy, WBC: white blood cell count

Because of the very serious potential AEs, four of the drugs have been prescribed under the FDA's Risk Evaluation and Mitigation Strategy (REMS). A REMS is a safety strategy to manage a known or potential serious risk associated with a drug in order to allow patients continued access to the drug by managing its safe use. The goal is to ensure that the benefits of the drug outweigh the risk. Because the risk profile for each drug is different, the REMS for each drug is also different. The REMS for natalizumab focuses on the risk for PML. The REMS for alemtuzumab focuses on the risks for autoimmune blood, thyroid and kidney diseases, infusion reactions, and malignancies. The REMS for fingolimod has been lifted, but focused on bradyarrythmias, herpes virus infections, liver injury, pulmonary function, and macular edema. Finally, the REMS for daclizumab focuses on liver toxicity and autoimmune skin, gastrointestinal, and lymph diseases.

Three of these four drugs carry black box warnings (natalizumab, alemtuzumab, and daclizumab. Two other DMTs carry black box warnings: teriflunomide for hepatotoxicity and teratogenicity; and rituximab for fatal infusion reactions, hepatitis B virus (HBV) reactivation, and PML based on its use for the treatment of B-cell lymphomas. It is not known whether the FDA will require a black box warning or REMS for ocrelizumab.

^{*}REMS: Risk Evaluation and Mitigation Strategy

There are case reports of PML with several of the DMTs (fingolimod, dimethyl fumarate, natalizumab, rituximab), but natalizumab is the only FDA-indicated DMT with a black box warning for PML due to the much greater risk associated with its use. Studies have identified three risk factors for PML in patients treated with natalizumab: positive antibodies for the JC virus, prior immunosuppressive therapy (e.g., mitoxantrone, methotrexate, azathioprine, cyclophosphamide, mycophenolate), and length of time on natalizumab (> 2 years). The incidence of PML varies from < 0.09 per 1000 patients for JC virus antibody-negative patients to 11.1 per 1000 patients for JC virus antibody-positive patients on natalizumab for 2 to 4 years with prior exposure to immunosuppressive drugs (~120-fold difference in risk). 104

Follow-up studies of alemtuzumab confirm the high risk for autoimmune disease. In one cohort, 47% of participants developed autoimmune disease over an average of 6.1 years of follow-up. 20 This included autoimmune thyroid disease in 35% of all patients and idiopathic thrombocytopenic purpura in 3%. No cases of PML were observed in this study. The most common infections were urinary tract infections (12%) and herpes zoster (8%). In the extension of the TRANSFORMS study of fingolimod beyond one year, the AEs were similar to those observed in the original trial. 105 Two patients met formal criteria for hepatotoxicity and discontinued the drug. Basal cell carcinoma (9 patients) and lymphopenia (9 patients) were the other two common AEs leading to drug discontinuation. The 15-year extension trial of glatiramer acetate and the 21-year extension trial of interferon β -1b did not identify any new significant adverse events.

Because of the risk for serious adverse events, both alemtuzumab and daclizumab's FDA indications state that they "should generally be reserved for patients who have had an inadequate response to two or more drugs indicated for the treatment of MS. Similarly, the FDA indication for natalizumab originally stated "Tysabri is generally recommended for patients who have had an inadequate response to, or are unable to tolerate, an alternate MS therapy." It now reads "Tysabri increases the risk of PML. When initiating and continuing treatment with Tysabri, physicians should consider whether the expected benefit of Tysabri is sufficient to offset this risk. "

Balancing the benefits and harms is challenging for both patients and their providers, as the more powerful drugs are more effective, but carry with them higher risks for life-threatening complications.

Controversies and Uncertainties

Several limitations to the evidence base reduced our ability to make confident judgments about the comparative net health benefits of DMTs for MS. First, the evolving diagnostic criteria for clinically-definite MS over the decades of clinical trials of DMTs caused important variation among the studied patient populations. Many patients enrolled in trials that used the McDonald criteria would have been diagnosed with CIS under the Poser criteria. Prior analyses have also demonstrated a decrease in ARRs and risk of disability progression in the clinical trial populations over the past 25

years.²¹⁻²⁵ There is not consensus about the reason or reasons for the observed change in rates. However, the relative benefits of DMTs appear similar across these different populations. There is no convincing evidence of effect modification by risk for relapse.

A second limitation was the short follow-up of the randomized trials. The important clinical impacts of MS must be measured over decades. However, the majority of the RCTs followed patients for 1 or 2 years before unblinding. While long-term extension trials demonstrate continued DMT efficacy over time, the true impact of individual drugs is difficult to assess because loss to follow-up introduces selection bias and unblinding introduces measurement bias and differential cointerventions. The short follow-up time in the trials most directly impacted the estimates of sustained disability progression, as demonstrated by the wide credible intervals that often included 1 in the ICER NMA.

Ideally, comparative effectiveness assessments are informed by information from large, high-quality, head-to-head trials. Although NMAs may be performed in the absence of such evidence, the assumptions that are necessary to perform indirect comparisons through common comparators introduce additional uncertainty. Additionally, many of the trials were not double-blinded so the ascertainment of both relapses and disability progression required judgments on the part of patients and clinicians that could be influenced by knowledge of treatment group. The openlabel trials were also potentially subject to ascertainment bias.

It would also have been preferable to compare first-line therapies to each other and second-line therapies to each other, but the lack of conclusive FDA indications, clinical guidelines, or RCT entry criteria precluded those types of comparisons. Several drugs, by virtue of their potentially life-threatening side effects (e.g., natalizumab, alemtuzumab, fingolimod, daclizumab) are often considered second- or third-line agents, but many patients and clinician organizations have advocated for their first-line use due to their higher efficacy than the interferons and glatiramer acetate. Furthermore, the clinical trials for these drugs largely recruited treatment-naïve patients. Several trials included a mix of treatment naïve and experienced patients, but only one of the 33 reviewed RCTs studied a population in which 100% of the participants had been treated with at least one DMT.⁸⁹

Similarly, there is no widely accepted definition for a patient who is at high risk for rapid progression of their MS, despite the identification of many risk factors. Experts have suggested that the highly effective, but risky medications such as alemtuzumab and natalizumab should be used early in high-risk patients. The lack of a clear definition of high risk raises the possibility for significant practice variation in the use of highly effective agents that is not supported by evidence. Some patients may not receive appropriate treatment and others will be treated who are unlikely to benefit from the higher-risk agents.

In the NMA and in the model below, we treated all of the DMTs equally, as if each could be used as first line therapy. In reality, most insurance plans support using one of the interferons or glatiramer aceteate as first line therapy and the FDA indications for alemtuzumab, daclizumab, and natalizumab discourage their use as first line therapy.

Finally, the results of the randomized trials of ocrelizumab for patients with RRMS and PPMS are encouraging, but ocrelizumab has not yet received FDA approval. The independent review of the full set of clinical trial data performed by the FDA will be invaluable in assessing the balance of risks and benefits for ocrelizumab. In addition, the limited numbers of patients and short follow-up among those treated with ocrelizumab add to the uncertainty about rare, but serious adverse events that may not be fully appreciated until post-marketing data are available. It is the only DMT under consideration in this review that has no real-world data on safety.

Summary

RRMS: DMTs Compared to Best Supportive Care

The data are most robust comparing DMTs to placebo. Of all the agents included in this review, alemtuzumab, natalizumab, and ocrelizumab were the most effective drugs in reducing relapses and they were significantly better than the other DMTs. They were also three of the top four most effective drugs at reducing disability progression, although the separation from other DMTs was not as substantial. The differences in efficacy between the alemtuzumab, natalizumab, and ocrelizumab were relatively small and non-significant. We gave alemtuzumab and natalizumab an "A" rating - high certainty of a moderate to large net health benefit. The primary factor distinguishing the two drugs, apart from mechanism of action, is their unique risks for adverse events. Patients treated with natalizumab are at high risk for PML and must be monitored closely for its signs and symptoms of PML and other infections. Patients treated with alemtuzumab are at risk for life-threatening ITP, infusion reactions, and less severe, but common autoimmune thyroid diseases. We gave ocrelizumab a B+ rating (incremental or better net health benefits when compared to placebo) because of additional uncertainty with pending FDA approval and the lack of real-world experience with the drug.

The next most effective group for relapse reduction included daclizumab, rituximab, fingolimod, and dimethyl fumarate. There is only one small trial of rituximab with no data on disability progression, but impressive MRI data, so we judge the evidence on rituximab to be promising, but inconclusive (P/I). We judge daclizumab, fingolimod, and dimethyl fumarate to produce incremental or better net health benefits ("B+"); although point estimates of their benefits may be slightly less than those of ocrelizumab, there is substantial overlap of all four agents' credible intervals compared with one another in both ARR and disability progression NMAs. The pivotal trials for daclizumab, fingolimod, and dimethyl fumarate have been published, so there is greater certainty in the evidence supporting their safety and effectiveness. Of the three, dimethyl fumarate may have a

lower risk for very serious adverse events because it does not carry a black box warning, nor is its use monitored under a REMS program.

Finally, our NMA suggested that the interferons, glatiramer acetate, and teriflunomide were substantially similar with respect to their effects on ARR and disability progression. Each of the four prior NMAs came to the same conclusion either about the interferons and glatiramer acetate²⁶, or those agents plus teriflunomide.²⁷⁻²⁹ In addition, a 2017 systematic review of 36 observational trials with data from more than 32,000 patients concluded that the interferons show similar effectiveness in real world practice.³⁰ All are effective at reducing relapses and have good safety profiles with decades of treatment experience to support their safety. There are small differences among the agents. For instance, the higher doses of interferon β -1a and teriflunomide are consistently more effective than the lower doses. Some of the injectable DMTs can be dosed less frequently and teriflunomide is taken orally. These differences be important for patients when choosing among different options, but the clinical differences in important outcomes are small. As such, we judged with high certainty that these nine DMTs provide incremental net health benefits compared to best supportive care ("B").

Table 11. ICER rating on the Comparative Net Health Benefit of DMTs for RRMS Compared to Best Supportive Care

Drug	ICER rating
Injectable Agents	
Interferon β-1a 30 mcg (Avonex)	В
Interferon β-1b 250 mcg (Betaseron, Extavia)	В
Glatiramer acetate 20 mg (Copaxone)	В
Glatiramer acetate 40 mg (Copaxone)	В
Interferon β-1a 22 mcg (Rebif)	В
Interferon β-1a 44 mcg (Rebif)	В
Peginterferon β-1a (Plegridy)	В
Daclizumab (Zinbryta)	B+
Oral Agents	
Fingolimod (Gilenya)	B+
Teriflunomide 7 mg (Aubagio)	В
Teriflunomide 14 mg (Aubagio)	В
Dimethyl fumarate (Tecfidera)	B+
Infused Agents	
Natalizumab (Tysabri)	Α
Alemtuzumab (Lemtrada)	Α
Ocrelizumab (Ocrevus)	B+
Rituximab (Rituxan)	P/I

Figure 5 below qualitatively summarizes the relative safety and effectiveness of the DMTs for RRMS. Each drug or group of drugs is represented by an oval. The width of the oval reflects uncertainty about its overall effectiveness and the height of the oval represents uncertainty about the safety of the drug. The safest drugs are highest on the graph and the most effective are to the right. Thus alemtuzumab, which was consistently the most effective drug, is on the right side of the figure but relatively low. The interferon/glatiramer acetate group is on the upper left as those DMTs are among the safest, but least effective. The ideal DMT, both safe and highly effective, would be to the upper right.

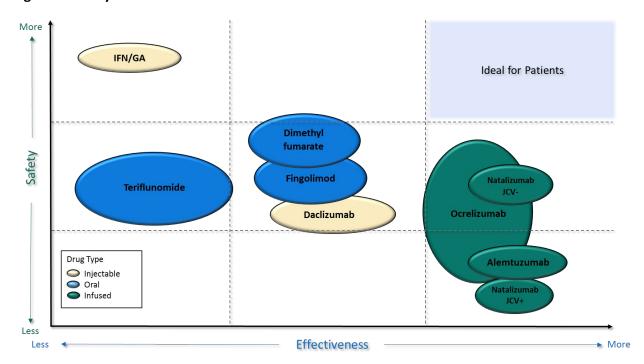


Figure 5. Safety and Effectiveness of DMTs for RRMS

Wider and taller shapes indicate greater uncertainty. Not drawn to scale.

RRMS: Newer DMTs Compared to Interferons and Glatiramer Acetate

The comparison of the newer agents to the interferons and glatiramer acetate is of greater interest to many stakeholders (Table 12). Alemtuzumab significantly reduces relapses and disability progression compared to the early injectable DMTs, but carries significant risks for life-threatening complications. We judge it to incremental or better compared to the earlier DMTs (B+). Natalizumab also significantly reduces relapse rates compared to the early injectable agents, but is not significantly better than most for disability progression. The AFFIRM trial demonstrated a large decrease in disability progression compared with placebo, but there are no large randomized trials comparing natalizumab to another DMT. Given the lack of direct comparative trial results, the availability of data from only a single trial, and the additional harms associated with natalizumab,

we judge it to be incremental or better when compared to the injectable DMTs (B+). Daclizumab, fingolimod, and dimethyl fumarate significantly reduced relapses compared to the early injectable DMTs, but are not significantly better at reducing disability progression. They all have greater risks for life-threatening adverse events than the earlier DMTs. Thus, we judge them to be comparable or better when compared to the injectable DMTs (C+).

As noted above, there is only one small trial of rituximab compared to placebo with no data on disability progression, but impressive MRI data. We judge the evidence on rituximab to be promising, but inconclusive (P/I). Ocrelizumab significantly reduces relapses and disability progression compared to the interferons and glatiramer acetate. To date, it has few know severe adverse events. However, it is does not have FDA approval and there is no real-world evidence supporting its efficacy. Thus, we judge it to produce incremental or better net health benefits when compared to the earlier agents, a "B+" rating. The ARR and disability progression for teriflunomide were not significantly different compared with the interferons and glatiramer acetate. It has the advantage of being an oral agent, but has a boxed warning for hepatotoxicity and has other important side effects. Overall teriflunomide has comparable net health benefits to the interferons and glatiramer acetate.

Table 12. ICER Rating on the Comparative Net Health Benefit of Newer DMTs for RRMS Compared to the Interferons and Glatiramer Acetate

Drug	ICER rating
Injectable Agents	
Daclizumab (Zinbryta)	C+
Oral Agents	
Fingolimod (Gilenya)	C+
Teriflunomide 7 mg (Aubagio)	С
Teriflunomide 14 mg (Aubagio)	С
Dimethyl fumarate (Tecfidera)	C+
Infused Agents	
Natalizumab (Tysabri)	B+
Alemtuzumab (Lemtrada)	B+
Ocrelizumab (Ocrevus)	B+
Rituximab (Rituxan)	P/I

RRMS: Additional Key Comparisons

One of the specific comparisons we were asked to assess was the comparative effectiveness of interferon β -1a 44 mcg SC TIW (Rebif) to interferon β -1a 30 mcg IM once weekly (Avonex). In the NMA, Rebif had a significantly lower relapse rate than Avonex (RR 0.77, 95% CrI 0.65-0.88) and a non-significantly lower disability progression (RR 0.92, 95% CrI 0.65-1.27). In the EVIDENCE trial, which compared these two different formulations head to head, there were non-significant trends

towards lower relapse rates (RR 0.84, 95% CI not reported, p=0.093) and disability progression (RR 0.70, 95% CI 0.39-1.25). The primary endpoint in the EVIDENCE trial, the proportion of patients remaining free from relapse, was lower with Rebif (HR 0.70, 95% CI 0.55-0.88, p=0.003). In addition, the MRI outcomes (number of combined unique active lesions, T1 gadolinium-enhancing lesions, and active T2 lesions) were significantly better in the patients treated with Rebif (P<0.001 for all 3 comparisons). SAEs and discontinuations due to AEs were almost identical in the two groups, but patients in the Rebif group reported more injection site reactions, liver enzyme abnormalities, and white blood cell abnormalities. Overall the differences in harms were small. Based on these data we judge there to be moderate certainty of a small-to-substantial net health benefit for Rebif compared to Avonex, with high certainty of at least a small net health benefit (B+).

There are insufficient data to compare rituximab to ocrelizumab. The two drugs target the same molecule (CD20), but ocrelizumab is a fully-humanized monoclonal antibody, which is likely why it appears to have fewer serious infusion reactions than rituximab. The only randomized trial of rituximab for patients with RRMS was small, short, and did not report disability progression. The reduction in relapses observed was comparable to that observed with ocrelizumab, but the confidence interval was wide. Thus, there is insufficient evidence to estimate the comparative clinical effectiveness of the two DMTs (ICER rating: I).

There are observational data suggesting that rituximab deserves further study. A Swedish study evaluated patients with RRMS treated with natalizumab who needed to change to a different DMT because they tested positive for antibodies to the JC virus. ¹⁰⁸ Using a propensity score matched analysis, the investigators compared outcomes in patients treated with rituximab to those of patients treated with fingolimod. Over 1.5 years, 1.8% of patients treated with rituximab had a relapse compared to 17.6% of patients treated with fingolimod (HR 0.10, 95% CI 0.002-0.43). Adverse events (5% vs. 21%) and treatment discontinuation (2% vs. 28%) were also lower in the rituximab treated group. Finally contrast enhancing lesions on MRI were also lower in the rituximab group (1.4% vs. 24.2%, OR 0.05, 95% CI 0.00-0.22). These results are from an observational study, not a randomized trial, so they may be subject to selection bias and confounding by indication, but the large effect sizes and the robustness of the outcomes adjusted for known potential confounders and propensity score adjustment suggest that rituximab deserves further study.

PPMS

As described in detail in the Key Studies section, there is one placebo controlled trial of ocrelizumab (ORATORIO) and one of rituximab (OLYMPUS). For ocrelizumab, confirmed disability progression sustained for at least 12 weeks, the primary endpoint of the trial, was significantly lower than placebo (HR 0.76, 95% CI 0.59 - 0.98, p=0.03). Confirmed disability progression sustained for at least 24 weeks was also significantly lower (HR 0.75, 95% CI 0.58-0.98, p=0.04), and there was a significant reduction in the T2 lesion volume (p<0.001), faster performance of the 25-foot walk

(p=0.04) and a significant improvement in the change in brain volume (p=0.02). There was no excess of adverse events associated with ocrelizumab. We judge there to be moderate certainty of small to substantial net benefit, tempered primarily by the lack of FDA approval and the lack of real world experience with the drug (ICER rating B+).

For rituximab, the OLYMPUS trial was a good-quality trial that did not find a significant difference in the time to confirmed disease progression sustained for at least 12 weeks (HR 0.77, p=0.14). There was a significant reduction in the T2 lesion volume (p<0.001), but not in the change in brain volume (p=0.62). Preplanned subgroup analyses found that rituximab significantly delayed the time to progression for patients aged < 51 years (HR 0.52, p=0.01) and in those patients with gadolinium-enhancing lesions at baseline (HR=0.41, p=0.007). Infection-associated SAEs were more common with rituximab. In summary, the trial did not meet its primary endpoint, but suggested that rituximab shows promise for younger patients with PPMS who have gadolinium-enhancing lesions on MRI. We judge the evidence for the effectiveness of rituximab in PPMS to be promising, but inconclusive (P/I).

Table 13. ICER Rating on the Comparative Net Health Benefit of DMTs for PPMS Compared to Best Supportive Care

Drug	ICER rating
Ocrelizumab (Ocrevus)	B+
Rituximab (Rituxan)	P/I

5. Other Benefits or Disadvantages

Our reviews seek to provide information on other benefits or disadvantages offered by the intervention to the individual patient, caregivers, the delivery system, other patients, or the public that would not have been considered as part of the evidence on comparative clinical effectiveness. Examples include but are not limited to:

- 1. Methods of administration that improve or diminish patient acceptability and adherence
- 2. A public health benefit, e.g., reducing new infections
- 3. Treatment outcomes that reduce disparities across various patient groups
- 4. More rapid return to work or other positive effects on productivity (if not considered a benefit as part of comparative clinical effectiveness)
- 5. New mechanisms of action for treatments of clinical conditions for which the response to currently available treatments varies significantly among patients for unknown reasons (substantial heterogeneity of treatment effect)

One consistent message that we heard from the patient community is the value of choice. They value choice in the route of administration, choice in the mechanism of action, and choice in the balance of risks and benefits.

The route of administration is important for patients.^{32,33} For many years, their only option was regular subcutaneous injections. Many patients would prefer to take one to two pills each day rather than inject themselves with medication or be required to visit the doctor for a drug infusion, particularly when starting therapy. However, many patients who have been stable on daily injectable therapy for years choose to continue daily injections rather than switch to another agent with less frequent injections or oral administration, suggesting that once patients are comfortable with an effective drug for them, the route of administration may be less important.

Similarly, the travel and time commitment posed by an office visit to receive an IV infusion may discourage some patients from treatment with the infused agents. Conversely, avoiding regular injections or daily pills may appeal to some patients. In addition, the required contact with neurology professionals on a regular basis may enhance the overall care of their MS.

It is also important to recognize the value of having drugs with multiple mechanisms of action. MS is a heterogeneous disease, with some patients remaining stable for years while others progress rapidly. The availability of more potent drugs for those who appear to have aggressive disease is reassuring. Similarly, patients value the ability to switch to a drug with a different mechanism of action when their current therapy is not working. Currently there is no way to match an individual patient to the drug with the most appropriate mechanism of action for their individual form of MS,

but there is hope that research into the underlying mechanisms of MS will allow physicians to personize therapy in the future.

A reduction in relapse rates and disability progression also has non-medical benefits for patients, their caregivers, and society. Patients with MS are commonly in their most productive years at home, work and volunteering in the community. Relapses cause absence from work and other important life tasks. Progressive disability leads to early retirement with associated loss of income, both for the patient and for caregivers who devote time to caring for the affected individual. Improved outcomes lead to increased productivity in each of these areas. Clinical trial results do not capture these benefits of therapy.

The stress that caregivers experience in supporting patients with MS is not captured in any of the clinical trial results and is an important benefit of improvement in therapy. Relapses and progressive disability have important effects on the quality of life of the caregivers in addition to that experienced by the patient.

Ocrelizumab will likely be the first drug to receive FDA approval for the treatment of PPMS, which is an important benefit.

6. Comparative Value

6.1 Overview

The primary aim of this analysis was to estimate the lifetime cost-effectiveness of various DMTs for patients initiating treatment for 1) RRMS and 2) PPMS. The model structures for this assessment are depicted in Figure 6. The two models were developed in Microsoft Excel.

The models estimated the average amount of time that patients spent in each health state, defined by EDSS category. Unadjusted and utility-adjusted time spent in each health state were summed over a patient's remaining lifetime to provide estimates of life expectancy and quality-adjusted life expectancy; the RRMS model further estimated the frequency of relapses in each state. For pairwise comparisons in the RRMS model, generic glatiramer acetate 20 mg (Glatopa) was chosen as the universal comparator. This DMT was chosen because glatiramer acetate is the most commonly used DMT, the generic version is the lowest priced version, and there is no existing evidence to support any difference in efficacy between branded and generic versions. Cost-effectiveness ratios were also calculated versus no DMT (i.e., best supportive care). For best supportive care, we used data on the natural history progression, regression, relapse rates, and mortality from publicly available sources. Costs for best supportive care were based a previous analysis that modeled costs by EDSS state and included inpatient and outpatient admissions, office visits to physicians and other health professionals, examinations, medical devices, non-DMT drugs, and over the counter medicines. Best supportive care was used as the comparator in the PPMS model, as no medications have yet received FDA approval for this indication.

Model outcomes of interest included:

- By intervention:
 - o Quality-adjusted life expectancy
 - Life expectancy
 - Relapses (RRMS model only)
- Pairwise comparisons:
 - Costs per additional QALY vs. no DMT / best supportive care
 - Costs per additional QALY vs. generic glatiramer acetate 20 mg
 - Costs per additional life-year vs. no DMT / best supportive care
 - o Costs per additional life-year vs. generic glatiramer acetate 20 mg
 - Cost per relapse avoided vs. no DMT / best supportive care (RRMS model only)
 - Cost per relapse avoided vs. generic glatiramer acetate 20 mg (RRMS model only)

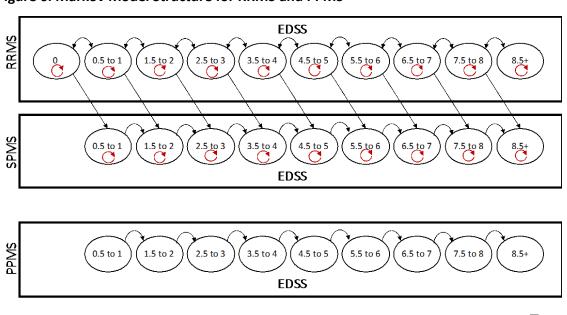
6.2 Cost-Effectiveness Model: Methods

Model Structure

We developed two Markov models, one for RRMS and one for PPMS (Figure 6), with health states based on the EDSS, ⁴⁷ which has been widely used to describe MS progression in clinical trials. ¹⁰⁹ RRMS patients may progress to secondary progressive MS (SPMS) over their lifetime; therefore, SPMS states were included in the RRMS model. The models were adapted from previously published work evaluating the cost-effectiveness of MS treatments. ¹¹⁰⁻¹¹⁷

We used a natural history transition matrix and applied a relative risk for each therapy to derive DMT-specific transition probabilities between health states. This relative risk, based on the comparative clinical effectiveness analysis described above, was applied to progression probabilities for increasing EDSS states. The same relative risk was applied to progression probabilities for conversion from RRMS to SPMS, under the assumption that patients' EDSS score increased by 1 at the time of conversion from RRMS to SPMS. A rate ratio for each DMT was applied to the natural history EDSS-specific ARRs, also based on the comparative clinical effectiveness analysis described above.

The RRMS model consisted of 20 health states: EDSS 0–9 for RRMS patients, EDSS 1–9 for SPMS patients, and death (Figure 6). At baseline, a cohort of patients was distributed among the 10 RRMS health states according to the expected distribution of newly diagnosed MS patients. 86,98,118-120 These patients then transitioned between states during each one-year cycle over a lifetime time horizon, from treatment initiation until death. Patients entering the model were treatment-naïve, and began first-line treatment with one of the DMTs of interest upon entering the model. After discontinuation of the initial DMT in an RRMS or SPMS state, patients continued to a second-line treatment; after discontinuation from second-line therapy, patients transitioned to best supportive care. For patients with RRMS, EDSS scores could increase, decrease, or remain the same at each cycle; or the patient could transition to SPMS. In SPMS, EDSS scores could increase or remain the same, but were assumed not to decrease. A patient could progress to death or have a relapse from any state.


Though some DMT labels suggest use later in treatment sequences, no label precludes use as a first-line agent. Therefore, all DMTs were modeled as such for completeness. In the case of MS, there is no standard recommended treatment sequence in DMT labels, published literature, or clinical guidelines. It is not feasible to model every potential combination of DMTs over time; therefore we chose a more parsimonious model structure. We chose to use an average second-line approach, described below, that aggregates second-line treatments over all patients. Additionally, although patients may not often move to supportive care after only two DMTs, there is limited data with

which to model the efficacy of DMTs in third- and later-lines of therapy. This approach should not substantially bias the estimated cost-effectiveness toward any particular DMT or the class overall.

The PPMS model consisted of 10 health states: EDSS 1-9 and death (Figure 6). As with the RRMS model, patients were distributed among the 10 PPMS health states, could transition between states during each one-year cycle over a lifetime time horizon, and were assumed to be treatment-naïve at the start of DMT therapy. After discontinuation of a DMT in a PPMS state, the patient received best supportive care, given the lack of an approved drug for this indication. For patients with PPMS, EDSS scores could increase or remain the same, but were assumed not to decrease. A patient could progress to death from any state.

Utilities and costs were applied to each health state. Additionally, utility decrements and costs were applied for each relapse event, as well as for SAEs. Outcomes and costs were dependent on time spent in each health state, drug treatment, numbers of relapse events, and SAEs. For each DMT, a total drug cost was calculated including acquisition, administration, and monitoring costs.

The model outcomes were drug costs, adverse event costs, total costs, quality-adjusted life-years (QALYs), life-years, and relapses. Costs were inflated to 2016 US dollars using the US consumer price index (CPI) for medical care.¹²¹

Relapse 🖰

From any state

Figure 6. Markov Model Structure for RRMS and PPMS

Death

Target Population

The populations for these analyses were adults ages 18 years and older in the United States with: 1) RRMS and 2) PPMS. Both populations were previously naïve to DMTs.

The modeled population for RRMS had an assumed mean age at onset of disease of 29 years (range for sensitivity analysis [SA] 23-35 years). The modeled population for PPMS had an assumed mean age at onset of disease of 42 years (range for SA 33-50 years). 123

Treatment Strategies

The interventions for RRMS assessed in this model were the same as those assessed in the evidence review and NMA, with the exception of rituximab and glatiramer acetate 40 mg, as there was insufficient evidence on disability progression to include them in the model. The intervention for PPMS assessed in this model was ocrelizumab.

Key Model Choices and Assumptions

The model used a US health system perspective (i.e., focus on direct medical care costs only) with a 3% discount rate for costs and health outcomes over a lifetime time horizon. The model was informed by several assumptions, which are listed in Table 14 along with the rationale for each assumption.

Table 14. Key Model Assumptions

Assumption	Rationale
Costs and mortality risks for the different EDSS-	EDSS stages are used to characterize disability for all
defined disease stages were assumed to be the same	types of MS. There is little to no evidence that costs or
for patients with 1) RRMS and 2) SPMS or PPMS.	mortality rates differ between these disease states.
Patients continued treatment after transitioning to	Current clinical opinion supports the continued use of
SPMS states.	treatment after transitioning to SPMS.
Patients receiving DMTs were assumed to stop	While there is no clinical consensus, stopping
treatment when their EDSS score reached 7 or above.	treatment at EDSS 7 or above is commonly done in
	clinical practice. Note that EDSS transitions were
	based on confirmed disability progression; therefore
	temporary EDSS increases did not influence
	discontinuation. We conducted a scenario analysis in
	which treatment was continued beyond EDSS 7.
Patients who discontinued on initial treatment for	Utilization data and clinical opinion suggest that most
RRMS or SPMS were assumed to initiate second-line	RRMS and SPMS patients initiate second-line
treatment.	treatment.
We assumed that second-line treatment was evenly	These DMTs are commonly used for second-line
distributed across natalizumab, fingolimod,	treatment in clinical practice. Our approach
alemtuzumab, daclizumab, and dimethyl fumarate. In	aggregates future treatments to apply averages to all
the case that the first-line DMT was one of these, the	patients. This approach would not substantially bias
second line treatment was distributed equally over	toward any particular DMT, or the class overall.
the remaining DMTs.	
Patients who discontinued on second-line treatment	Current evidence does not suggest that untreated
were assumed to follow the natural history	disease progression rates differ after discontinuation
progression of disease.	of active therapy.
No vial sharing was assumed.	This is in line with common clinical practice.
Patients had the same transition probabilities per	Markov model assumption
health state regardless of the patient's disease	
history.	

Clinical Inputs

Clinical Probabilities

Treatment effectiveness with DMTs was included in the model in two ways: 1) treatment effect on disability progression to higher EDSS states, and 2) treatment effect on ARR (Appendix Table E5). These results were based on the NMA (methods and results presented in Section 4). The treatment effect of ocrelizumab on disability progression to higher EDSS states in PPMS was acquired from the ORATORIO trial.⁹⁰

The annual discontinuation probability for each DMT was derived from 25 of the 27 studies included in the base case network meta-analysis for EDSS progression (Appendix Tables C5 and C6);

2 studies were excluded because they did not include reasons for discontinuation.^{79,91} For each study, we extracted the total number of study participants, the total number of participants who discontinued, and the number who discontinued due to non-protocol-related reasons. Reasons for discontinuation that were excluded from our final discontinuation probability include death, refusal to sign re-consent form, withdrawing consent, protocol violation, administrative problems, or deviation from protocol. All other reasons for discontinuation were included. The percent of the total number of study participants who discontinued for qualified reasons was then annualized. For each DMT, we took an average of the annualized discontinuation probability with each study weighted based on the total study participants (Table 15). After discontinuation, all patients transitioned to second line treatment or supportive care (see methods below).

Table 15. Annual Discontinuation Probability for Each DMT

DMT	Annual Discontinuation Probability
Interferon β-1a 30 mcg (Avonex)	5.3%
Interferon β-1b 250 mcg (Betaseron)	4.1%
Interferon β-1b 250 mcg (Extavia)	4.1%
Glatiramer Acetate 20 mg (Copaxone)	5.2%
Glatiramer Acetate 20 mg (Glatopa)	5.2%
Interferon β-1a 22/44 mcg (Rebif)	6.9%
Peginterferon β-1a 125 mcg (Plegridy)	7.4%
Daclizumab 150 mg (Zinbryta)	6.6%
Fingolimod 0.5 mg (Gilenya)	7.5%
Teriflunomide 7/14 mg (Aubagio)	15.5%
Dimethyl Fumarate 240 mg (Tecfidera)	13.3%
Natalizumab 20 mg (Tysabri)	4.9%
Alemtuzumab 10 mg (Lemtrada)	1.9%
Ocrelizumab (Ocrevus)	4.6%

To evaluate progression of MS disease without a DMT, we modelled the natural history of RRMS, SPMS, and PPMS. The initial distribution of patients with RRMS was aggregated from several data sources to create a summary measure for implementation in the model (Appendix Table E6). 86,98,118-120 For the PPMS population, the initial distribution of EDSS states from the ORATORIO 100 trial was used (Appendix Table E6).

The transition probabilities between EDSS states in the absence of DMTs for RRMS, from RRMS to SPMS, and within SPMS are presented in Appendix Tables E8-E10; these were based on a previous study¹¹⁷ that used data from the DEFINE and CONFIRM clinical trial supplementary data, along with London, Ontario, cohort data.^{38,86,98} As there was not sufficient data available on PPMS transition probabilities, we assumed that PPMS transition probabilities were the same as SPMS transition

probabilities. The relative risks for each DMT were then applied to the progression probabilities (Appendix Table E5). Because patients transitioning from RRMS to SPMS were assumed to simultaneously increase EDSS states, the relative risks were applied to these probabilities as well.

ARRs in the absence of DMTs were based on an existing study¹¹⁷ that extrapolated from observational data in Patzold and Pocklington (Appendix Table E8).¹²⁴ It is difficult to select a representative data source for ARRs for untreated patients, as significant variation exists between populations, in relapse diagnoses, and over time. Therefore, we selected a data source with midrange estimates for relapse rates, and performed scenario analyses using data sources with higher and lower rates, as well as one-way sensitivity analyses on each input. Rate ratios for ARR resulting from the NMA described above were applied to each baseline ARR (Appendix Table E5). For patients who experience relapses, 18.7% were assumed to be severe, with the remainder being mild/moderate in severity.¹²⁵ We assumed that PPMS patients did not experience relapses.

Background mortality rates were based on age-specific US life tables. These were adjusted for MS-specific mortality using an EDSS-specific mortality multiplier calculated from Pokorski et al. the following equation, Multiplier=0.0219*EDSS-0.1972*EDSS-0.6069*EDSS+1, and are presented in Table 16. More recent data sources stratified by severity could not be identified.

Table 16. Calculated Mortality Multipliers of All-Cause General Population Mortality, by EDSS State (Applied to Age-specific Mortality Rates)

EDSS State	Mortality Multiplier* ¹²⁷	Range for SA
0	1.00	0.80-1.20
1	1.43	1.15-1.72
2	1.60	1.28-1.92
3	1.64	1.31-1.96
4	1.67	1.34-2.01
5	1.84	1.47-2.21
6	2.27	1.82-2.73
7	3.10	2.48-3.72
8	4.45	3.56-5.34
9	6.45	5.16-7.74

^{*}Calculated using the equation: Multiplier = 0.0219*EDSS³-0.1972*EDSS²+0.6069*EDSS+1

Utilities

Annual utility values per EDSS state were based on previously published estimates that were derived from patient-reported health states scored using the EQ-5D¹¹⁷, and that used data from the DEFINE and CONFIRM trials for RRMS and a UK survey for SPMS (Table 17).^{86,98,124} Each

mild/moderate relapse event was associated with a one-cycle disutility of 0.091, and each severe relapse event was associated with a one-cycle disutility of 0.302. We assumed that utility values for PPMS EDSS states were the same as for SPMS in the absence of available data. Note that for EDSS states that indicate the most severe levels of disability, the negative utility values indicate that patients consider quality of life to be so poor that they rate these health states to be worse than death. Such ratings are not uncommon in conditions featuring pronounced disability or inability to provide basic self-care. 129

Table 17. Utility Scores by Health State¹¹⁷

EDSS State	Annual Utility, RRMS*	Annual Utility, SPMS/PPMS*
0	0.8752	
1	0.8342	0.7905
2	0.7802	0.7365
3	0.6946	0.6509
4	0.6253	0.5816
5	0.5442	0.5005
6	0.4555	0.4118
7	0.3437	0.3000
8	0.0023	-0.0413
9	-0.1701	-0.2138
Death	0	0

^{*}Varied \pm 20% in sensitivity analysis

Adverse Events

For each DMT, we included associated SAEs, as severe events tend to differ between treatments and have effects on costs and/or health outcomes. We included data on adverse events when rates were provided in the label. No data on SAE risks for all DMTs could be identified from observational sources. Therefore, to evaluate SAE rates for each DMT, we collected SAE rates from all clinical trials. We included only SAEs that occurred in at least 1% of patients in clinical trials. We included PML for natalizumab, as that was the only DMT with available population-based rates. While PML has been reported for other drugs, this has been limited to case reports.

For each SAE, we applied a cost based on an assumed diagnosis related group (DRG) code, ICD-9 code, or resource utilization (Appendix Table E4). Source costs for utilization can be found in Appendix Table E2. We also applied an annualized disutility for each SAE (Appendix Table E4).

To calculate an expected SAE cost and disutility for each DMT, we multiplied the rates from trials by the costs and disutilities listed in Table 18. These resulting totals were applied for the first year of

treatment with the relevant DMT (Appendix Table E4). SAE rates for the two brands of interferon β-1b (Betaseron and Extavia) and for branded and generic glatiramer acetate 20 mg (Copaxone and Glatopa, respectively) were assumed to be the same. When SAE rates from the lower dose of a given DMT were greater than SAE rates for the higher dose, we used SAE rates from the lower dose. For sensitivity analyses, all expected SAE disutilities were varied from 0 to 0.05, and all expected SAE costs were varied from \$0 to \$1000.

Table 18. Utilities and Costs Associated with Severe Adverse Events

Severe AE		Cost	Disutility		
Severe AE	Per Event	Utilization	Per Event	Source	
Lymphopenia	\$126.38	blood count; 1 specialist visit	0	Jakubowiak 2016 ¹³⁰	
ALT increased	\$284.30	2 specialist visits; 4 liver function tests	0	Mauskopf 2016 ¹¹⁷	
Cholelithiasis	\$4,476.85	DRG 446	0.005	Cook 1994 ¹³¹	
Influenza	\$5,687.24	DRG 194	0.016	Mauskopf 2016 ¹¹⁷	
Serious infection	\$11,176.56	DRG 177	0.005	Jakubowiak 2016 ¹³⁰	
Trigeminal neuralgia	\$7,829.06	DRG 073	0.44	Tölle 2006 ¹³²	
Depression	\$3,884.28	DRG 881	0.56	Mauskopf 2016 ¹¹⁷	
PML	\$23,444.88	ICD diagnosis code 046.3	0.4	Campbell 2013 ¹³³	

Economic Inputs

Drug Acquisition Costs

Each DMT was associated with an annual cost based on the wholesale acquisition cost (WAC), dosing, administration, and monitoring. Average discounts applied to each drug are shown in Table 19. These estimates were derived using data from SSR Health that combined data on net US dollar sales with information on unit sales to derive net pricing at the unit level across all payer types. In general, this net price reflects total discounts and rebates. Companies retain discretion over which price concessions are included in reported net sales, but in financial filings typically describe them as encompassing "all usual and customary items." Data on the approved agents of interest were current through the third quarter of 2016. We estimated net prices for these agents by comparing the four-quarter rolling averages (i.e., fourth quarter 2015 through third quarter 2016) of both net prices and WAC prices per unit to arrive at an average discount from WAC. Finally, we applied this average discount from WAC (rounded to the nearest 5%) to the most current WAC price¹³⁵ for each medication to arrive at an estimated net price. WAC prices used were current at the time of this report, though these prices change rapidly and did increase over the course of this analysis.

For alemtuzumab, costs were applied as calculated for year 1 and year 2. For years 3-6, the year 2 cost was applied to 19%, 13%, 16%, and 9% of patients who received an additional course in that year. After this time, patients on alemtuzumab no longer incurred drug acquisition costs, but continued to benefit from the efficacy of alemtuzumab until they transitioned to second-line treatment or natural history. As no price was available for ocrelizumab, we did not calculate or model projected drug costs for this DMT. We assumed dosing of each DMT was consistent with the FDA labeled indication, except for ocrelizumab and rituximab, which were dosed as in the clinical trials.

Table 19. DMT Acquisition Costs

Drug Name and Labeled Dose	Package	WAC Package	Discount	Annual Acquisition Cost [†]		
	Dose	Cost*	Applied to WAC	Year 1	Subsequent years	
Interferon β-1a 30 mcg (Avonex)	30mcg	\$6,287 / 4EA	20%	\$65,654	\$65,654	
Interferon β-1b 250 mcg (Betaseron)	300 mcg	\$6,648/ 14EA	35%	\$60,958	\$56,328	
Interferon β-1b 250 mcg (Extavia)	300 mcg	\$5,947 / 15EA	35%	\$50,899	\$47,033	
Glatiramer Acetate 20 mg (Copaxone)	20mg/1ml	\$7,114 / 30EA	15%	\$73,571	\$73,571	
Glatiramer Acetate 20 mg (Glatopa)	20mg/1ml	\$5,194 / 30EA	35%	\$41,075	\$41,075	
Interferon β-1a 22/44 mcg (Rebif)	22/44 mcg/0.5ml	\$6,629 / 0.5ml 12EA	15%	\$73,454	\$73,454	
Peginterferon β-1a 125 mcg (Plegridy)	125mcg/0. 5ml	\$6,287 / 1ml	10%	\$73,760	\$73,760	
Daclizumab 150 mg (Zinbryta)	150mg/1ml	\$6,833 / 1ml	5%	\$77,900	\$77,900	
Fingolimod 0.5 mg (Gilenya)	0.5mg	\$6743 / 30EA	10%	\$73,839	\$73,839	
Teriflunomide 7/14 mg (Aubagio)	7/14 mg	\$5,877 / 28EA	10%	\$68,951	\$68,951	
Dimethyl Fumarate 240 mg (Tecfidera)	240mg	\$6,820 / 60EA	10%	\$74,679	\$74,679	
Natalizumab 20 mg (Tysabri)	20mg/1ml	\$6,000 / 15ml	5%	\$74,304	\$74,304	
Alemtuzumab 10 mg (Lemtrada)	10mg/1ml	\$20,749 / 1.2ml	5%	\$98,562	\$59,137	

EA: each

Drug Administration Costs

For each DMT that is administered by intravenous infusion, we applied an annual administration cost corresponding to the infusion time (see Appendix Table E1). Utilization was calculated based on CPT codes for infusions (Appendix Table E2). All other products were assumed to have no administration costs.

^{*}Redbook accessed on January 13th, 2017

[†]Varied ± 20% in sensitivity analysis

Laboratory and Clinic Visit Costs

Several categories of administration, laboratory, and healthcare costs were used as model inputs for various calculations described below. Relevant costs and sources are shown in Appendix Table E2.

Drug Monitoring Costs

Most DMTs have laboratory monitoring recommended in the package insert. These instructions are summarized in Appendix Table E3. Any pre-treatment monitoring costs were included in the first year of treatment. Note that all monitoring costs for alemtuzumab are directly billed to the manufacturer by the laboratory. Because this program covers all monitoring costs, is used by 97% of patients including those with Medicare, and is expected to continue in perpetuity, we assumed no monitoring costs from the payer perspective for alemtuzumab. Daclizumab has additional monitoring after the final dose, which was captured in the first year after discontinuation. In addition to DMT-specific monitoring, we included a physician visit when a patient discontinues a first- or second-line regimen. Although MRIs are often used for MS monitoring, there are no consistent guidelines for frequency of periodic MRIs; we therefore chose not to explicitly model it. These costs should be captured in underlying costs, and would not substantially influence relative comparisons between DMTs.

Annual Costs by EDSS State

An annual cost of care was associated with each EDSS state. Costs for each EDSS state were assumed to be the same for RRMS, SPMS, and PPMS. EDSS state-specific costs were calculated based on an interpolation of data from Figure 2 in Kobelt et al. Data from the figure was extracted for direct costs (direct costs and other drugs from the figure) as well as indirect costs (indirect costs and informal care from the figure). Direct costs included inpatient and outpatient admissions, office visits to physicians and other health professionals, examinations, medical devices, non-DMT drugs, and over the counter medicines. Indirect costs, evaluated as part of a separate scenario analysis, included productivity losses based on short-term work absence, changes in working situation leading to reduction in income, and early retirement, all related to MS only. The extracted values were extrapolated using the following equations: direct costs = 1,594.1*EDSS +2,217.5, and indirect costs = 3,094.5*EDSS + 8,407.5. Results were inflated from 2004 to 2016 USD.

Table 20. Annual costs per EDSS state

EDSS State	Annual Direct Costs (2016 \$)136*	Annual Indirect Costs (2016 \$)136*
0	\$2,825	\$10,711
1	\$4,856	\$14,653
2	\$6,887	\$18,595
3	\$8,917	\$22,537
4	\$10,948	\$26,480
5	\$12,979	\$30,422
6	\$15,010	\$34,364
7	\$17,041	\$38,306
8	\$19,071	\$42,249
9	\$21,102	\$46,191

^{*}Extrapolated from Figure 2 of Kobelt et al. 136; varied \pm 20% in sensitivity analysis

As cost data were not available stratified by relapse severity, we assumed an average relapse cost for all relapse severities of \$2,692 in direct costs and \$2,339 in indirect costs. Direct costs included inpatient care (hospitalization and nursing home care); emergency room and outpatient services such as diagnostic tests for MS; ambulatory visits to healthcare professionals; medications (prescription, non- prescription, and alternative medicines); and home care services, as well as alterations and adaptations to home or car and the purchase of assistive medical devices. Indirect costs, evaluated as a separate scenario analysis, included short-term absence, reduced working time, reduced productivity, and informal care. 128

Second-Line Treatment

For the RRMS model, we assumed that all patients would continue to an average second-line therapy after discontinuation from a first line DMT. This average therapy was comprised of natalizumab, fingolimod, alemtuzumab, daclizumab, and dimethyl fumarate, which are all commonly used as later-line agents.¹³⁷ These DMTs were assumed to be equally distributed in the second line. In the case where one of natalizumab, fingolimod, alemtuzumab, daclizumab, or dimethyl fumarate was the first-line DMT, the second-line average was comprised of the remaining four. Patients discontinued second-line treatment at a constant rate of 10% annually until they reached EDSS 7, at which point all patients discontinued. Patients who discontinued second-line treatment then followed the natural history progression.

The effectiveness of second-line treatment was based on the average effectiveness of included DMTs as described above. The annual costs for second-line therapy were based on the average annual net cost of the included DMTs. To include alemtuzumab costs for second-line treatment, we calculated a constant annual cost by averaging the year 1 and year 2 costs, then dividing by the

expected time on second-line treatment. The SAE costs and disutilities for second-line treatment were based on the averages of the included DMTs.

Sensitivity Analyses

We ran one-way sensitivity analyses to identify the key drivers of model outcomes, using the ranges for each input described in the model inputs section above. Probabilistic sensitivity analyses were also performed by jointly varying all model parameters over 5,000 simulations, then calculating 95% credible range estimates for each model outcome based on the results. To demonstrate the results of this analysis, we calculated the probability that each DMT was cost-effective at the \$150,000 per QALY threshold compared to both supportive care and glatiramer acetate 20 mg. We used normal distributions for costs, rates, multipliers, and ages; log-normal for relative risks; gamma distributions for negative utilities; and beta distributions for probabilities and utilities (with the exception of SAE costs and disutilities, for which we used gamma distributions). Finally, we systematically altered the WAC of each DMT (with no discount) to estimate the maximum prices that would correspond to given willingness to pay (WTP) thresholds.

Scenario Analyses

We conducted several scenario analyses, listed below:

- 1. Higher untreated ARR by EDSS states¹¹⁷ (based on trial data, Appendix Table E7)
- 2. Lower untreated ARR by EDSS states¹³⁸ (based on data presented in Appendix Table E7)
- 3. NMA results for relative risk of EDSS progression using only 12-week results
- 4. NMA results for relative risk of EDSS progression using only 24-week results
- 5. Inclusion of indirect costs
- 6. Patients continue DMTs without stopping at EDSS 7
- 7. Higher AE rates for all DMTs: 50 per 1,000 incidence, with a utility decrement of 0.5 and cost of \$30,000 per event.

Model Validation

We used several approaches to validate the model. First, we provided information on the preliminary model approach, inputs, and results to the manufacturers of DMTs. Feedback from these companies resulted in the identification of an error in one SAE rate and cost, an error in the calculation of ocrelizumab cost, and revisions to the model, including DMT dosing and monitoring specifications, age of PPMS patients, removal of second-line treatment for PPMS patients, categorization of relapses by severity, and identification of additional data sources. Second, we compared our results to nine independently developed models, both published and unpublished, since 2010^{110,114,115,117,138-142}. Lastly, we conducted both probabilistic and one-way sensitivity analyses to assess model behavior.

6.3 Cost-Effectiveness Model: Results

Base Case Results

Total discounted costs, relapses, life-years, and QALYs over the lifetime time horizon are shown in Table 21, with results arranged in order of increasing QALYs. Among patients with RRMS, discounted costs for DMT therapy, SAEs, and MS-related healthcare over the projected lifetime were approximately \$333,300 for supportive care, and ranged from approximately \$572,000 for alemtuzumab to \$1.5 million for daclizumab. The projected number of relapses was 16.4 for supportive care, and ranged from 10.8 for alemtuzumab to 15.6 for interferon β -1a 30 mcg. Discounted life expectancy from age of DMT initiation (age 29 years for RRMS) was 21.4 years for supportive care, and ranged narrowly from 21.9 years for teriflunomide 7 mg and Interferon β -1a 22mcg to 23.1 years for alemtuzumab. Finally, projected discounted QALYs were 5.7 for supportive care, and ranged from 7.8 for teriflunomide 7 mg to 12.6 for alemtuzumab.

Among patients with PPMS, projected discounted costs, life-years, and QALYs for supportive care were approximately \$264,300, 15.6 years, and 2.7 QALYs, respectively, compared to approximately 16.1 years and 3.3 QALYs for ocrelizumab.

Table 21. Results for Base-case Analysis

Drug	Cost	Relapses	Life-Years	QALYs			
RRMS							
Supportive Care	\$333,273	16.4	21.4	5.7			
Teriflunomide 7 mg	\$951,141	14.8	21.9	7.8			
Interferon β-1a 22 mcg (Rebif)	\$1,088,892	14.6	21.9	7.9			
Interferon β-1a 30 mcg (Avonex)	\$1,069,959	15.6	22.0	7.9			
Teriflunomide 14 mg	\$968,663	14.8	22.0	8.4			
Glatiramer acetate 20 mg (Copaxone)	\$1,160,237	14.3	22.0	8.4			
Glatiramer acetate 20 mg (Glatopa)	\$862,912	14.3	22.0	8.4			
Interferon β-1a 44 mcg (Rebif)	\$1,114,885	14.5	22.1	8.5			
Dimethyl fumarate	\$1,023,958	14.3	22.2	9.0			
Fingolimod	\$1,114,879	13.5	22.2	9.0			
Interferon β-1b 250 mcg (Betaseron)	\$1,057,932	14.8	22.2	9.1			
Interferon β-1b 250 mcg (Extavia)	\$959,939	14.8	22.2	9.1			
Peginterferon β-1a	\$1,142,597	14.8	22.2	9.1			
Natalizumab	\$1,261,612	12.3	22.4	10.2			
Daclizumab	\$1,480,080	13.0	22.7	10.9			
Ocrelizumab	-	12.8	22.7	11.0			
Alemtuzumab	\$571,971	10.8	23.1	12.6			
PPMS							
Supportive Care	\$264,334	N/A	15.6	2.7			
Ocrelizumab	-	N/A	16.1	3.3			

Life-years and QALYs inversely correlated with relative risk for progression, as expected, with the exception of teriflunomide 14 mg and dimethyl fumarate. The rankings for these drugs are not directly ordered with relative risk for progression because of differences in rankings of the rate ratio for relapses, which negatively affected quality of life.

Projected relapses did not directly correlate with rate ratios for relapse because the underlying ARR changed with EDSS state, with the highest rate of relapses occurring in the middle EDSS states and lower rates at higher and lower EDSS states. Because of this underlying trend, number of relapses was affected by the relative risk for progression as well as the rate ratio for relapse rate. As a result, DMTs with particularly high or low relative risks for progression did not show direct correlation between rate ratios for relapse rate and number of projected relapses. For example, interferon β -1a 22 mcg had fewer projected relapses than peginterferon β -1a despite having a

higher rate ratio for relapses (0.70 vs. 0.63) because interferon β -1a 22 mcg had a higher relative risk for progression (0.81 vs. 0.63) and therefore more interferon β -1a 22 mcg patients were in higher EDSS states with low ARRs.

We also calculated the cost per additional QALY, cost per additional life-year, and cost per relapse avoided for each DMT compared to supportive care and compared to generic glatiramer acetate 20 mg (Tables 22 and 23). Again, DMTs were ordered according to the projected QALYs. When compared to supportive care for RRMS, costs per additional QALY ranged from approximately \$34,700 per QALY for alemtuzumab to \$341,400 for interferon β -1a 22 mcg; costs per additional life-year ranged from approximately \$141,600 per year for alemtuzumab to \$1.5 million for interferon β -1a 22 mcg; and costs per relapse avoided ranged from approximately \$43,200 for alemtuzumab to \$954,900 for interferon β -1a 30 mcg.

Table 22. Pairwise Results for DMTs Compared to Supportive Care for RRMS

Drug	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided
Teriflunomide 7 mg	\$289,970	\$1,346,566	\$410,754
Interferon β-1a 22 mcg (Rebif)	\$341,359	\$1,536,810	\$430,998
Interferon β-1a 30 mcg (Avonex)	\$331,381	\$1,412,036	\$954,935
Teriflunomide 14 mg	\$236,954	\$1,083,312	\$400,198
Glatiramer acetate 20 mg (Copaxone)	\$303,302	\$1,346,923	\$407,877
Glatiramer acetate 20 mg (Glatopa)	\$194,253	\$862,653	\$261,230
Interferon β-1a 44 mcg (Rebif)	\$284,135	\$1,261,603	\$418,760
Dimethyl fumarate	\$211,444	\$964,152	\$332,580
Fingolimod	\$238,970	\$1,089,957	\$276,100
Interferon β-1b 250 mcg (Betaseron)	\$214,355	\$908,578	\$468,100
Interferon β-1b 250 mcg (Extavia)	\$185,369	\$785,715	\$404,801
Peginterferon β-1a	\$238,321	\$1,036,909	\$514,656
Natalizumab	\$208,987	\$929,821	\$228,597
Daclizumab	\$222,782	\$916,425	\$344,719
Alemtuzumab	\$34,659	\$141,639	\$43,178

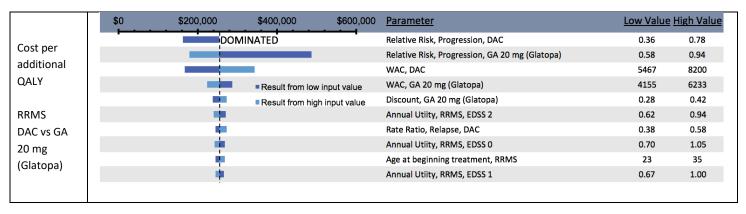
When compared to generic glatiramer acetate 20 mg, four DMTs were dominated or cost-increasing for cost per additional QALY and cost per additional life-year, and eight were dominated or cost-increasing for cost per relapse avoided. This indicates that the DMT had higher projected costs and worse or equal projected health outcomes (fewer QALYs or life-years, or more relapses). As branded and generic glatiramer acetate 20 mg were assumed to have equivalent effectiveness, the more expensive branded product would be considered cost-increasing in a cost-minimization

analysis. Among those DMTs with better health outcomes compared to generic glatiramer acetate 20 mg, costs per additional QALY ranged from approximately \$148,300 per QALY for interferon β -1b 250 mcg (Extavia) to approximately \$10.4 million per QALY for interferon β -1a 44 mcg; costs per additional life-year ranged from approximately \$528,400 per year for interferon β -1b 250 mcg (Extavia) to \$45.2 million per life-year for interferon β -1a 44 mcg; and costs per relapse avoided ranged from approximately \$196,100 for natalizumab to \$3.3 million for dimethyl fumarate. The incremental results for interferon β -1a 44 mcg are particularly high because the health outcomes are very close to those for generic glatiramer acetate 20 mg, while the costs are higher. Alemtuzumab was dominant for cost per additional QALY, cost per additional life-year, and cost per relapse avoided, meaning that projected costs were lower, projected QALYs and life-years were higher, and projected relapses were lower than glatiramer acetate.

Table 23. Pairwise Results for DMTs Compared to Generic Glatiramer Acetate 20 mg for RRMS

Drug	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided
Teriflunomide 7 mg	DOMINATED	DOMINATED	DOMINATED
Interferon β-1a 22 mcg (Rebif)	DOMINATED	DOMINATED	DOMINATED
Interferon β-1a 30 mcg (Avonex)	DOMINATED	DOMINATED	DOMINATED
Teriflunomide 14 mg	DOMINATED	DOMINATED	DOMINATED
Glatiramer acetate 20 mg (Copaxone)	COST INCREASING	COST INCREASING	COST INCREASING
Interferon β-1a 44 mcg (Rebif)	\$10,366,948	\$45,211,602	DOMINATED
Dimethyl fumarate	\$298,242	\$1,572,715	\$3,269,010
Fingolimod	\$463,009	\$2,443,134	\$313,627
Interferon β-1b 250 mcg (Betaseron)	\$298,148	\$1,062,145	DOMINATED
Interferon β-1b 250 mcg (Extavia)	\$148,335	\$528,441	DOMINATED
Peginterferon β-1a	\$417,814	\$1,679,274	DOMINATED
Natalizumab	\$232,405	\$1,037,090	\$196,062
Daclizumab	\$254,908	\$968,216	\$475,000
Alemtuzumab	DOMINANT	DOMINANT	DOMINANT

^{*}DOMINATED indicates the DMT had higher projected costs and worse projected health outcomes (fewer projected QALYs or life-years, more projected relapses) compared to glatiramer acetate 20 mg (Glatopa). †DOMINANT indicates the DMT had lower projected costs and better projected health outcomes (more projected QALYs or life-years, fewer projected relapses) compared to glatiramer acetate 20 mg (Glatopa). ^ COST INCREASING indicates that the DMT had higher projected costs and equal projected effectiveness compared to glatiramer acetate 20 mg (Glatopa).


Validation Results

Predicted costs across therapies were generally similar to previous models. We noted that our model used a younger age of drug initiation (29 years) than most available models (37-38 years) and used a longer time horizon, and that our projected life-years and QALYs were similar when using the same ages and time horizon. We note that our undiscounted life expectancy estimates (range: 64-69 years) are in line with observed and published MS life expectancy estimates. ^{143,144}. The projected number of relapses in our model is consistent with previous models when adjusted for age and time horizon ¹³⁹.

Sensitivity Analysis Results – One Way

To demonstrate effects of uncertainty on both costs and health outcomes, we varied input parameters across the ranges defined above to evaluate changes in the cost per additional QALY for each DMT compared to generic glatiramer acetate 20 mg. As an illustrative example, the impacts of varying each of the parameters in the model over ranges reflecting their uncertainty are shown in Figure 7 for daclizumab compared to generic glatiramer acetate 20 mg for RRMS. For those DMTs that were either dominant or dominated by generic glatiramer acetate 20 mg, we evaluated the changes in both incremental costs and incremental QALYs. Full results for all DMTs can be found in Appendix Table E11. Uncertainty in the costs of DMTs and relative risks for progression had the largest impact on model results.

Figure 7. One-way Sensitivity Analysis: Cost per Additional QALY for Daclizumab Compared to Generic Glatiramer Acetate 20 mg for RRMS

Sensitivity Analysis Results - Probabilistic

The results of our probabilistic sensitivity analysis can be found in Appendix Tables E12-E16. Wide variability in the incremental cost-effectiveness ratios was observed, especially when agents were compared to generic glatiramer acetate 20 mg rather than to supportive care. For example, the cost per additional QALY for daclizumab ranged from approximately \$157,000 to \$395,000 when

compared to supportive care and from \$128,763 to dominated when compared to generic glatiramer acetate 20 mg. The probability that each DMT was below the \$150,000 per QALY threshold is shown in Table 24. Generic glatiramer acetate, interferon β -1b 250 mcg (Extavia), and alemtuzumab had a greater than 10% chance of meeting the \$150,000 per QALY threshold compared to supportive care. Interferon β -1b 250 mcg (Extavia and Betaseron), teriflunomide 14mg, dimethyl fumarate, peginterferon β -1a, natalizumab, and alemtuzumab had a greater than 10% of meeting the \$150,000 per QALY willingness-to-pay level when compared to generic glatiramer acetate. Alemtuzumab had greater than 99% probability of being below that threshold, whether compared to supportive care or glatiramer acetate.

Table 24. Probability of Each DMT Costing Less than \$150,000 per QALY Compared to Supportive Care and Generic Glatiramer Acetate 20 mg

DMT	Compared to Supportive Care	Compared to Glatiramer Acetate 20 mg (Glatopa)
Teriflunomide 7 mg	0.0%	4.4%
Interferon β-1a 22 mcg (Rebif)	0.1%	2.2%
Interferon β-1a 30 mcg (Avonex)	0.0%	1.5%
Teriflunomide 14 mg	0.0%	12.8%
Interferon β-1a 44 mcg (Rebif)	0.0%	3.2%
Glatiramer acetate 20 mg (Copaxone)	0.0%	
Glatiramer acetate 20 mg (Glatopa)	11.1%	
Fingolimod	0.2%	7.4%
Interferon β-1b 250 mcg (Betaseron)	5.0%	27.9%
Interferon β-1b 250 mcg (Extavia)	20.9%	52.6%
Dimethyl fumarate	0.6%	21.4%
Peginterferon β-1a	0.8%	11.0%
Daclizumab	1.5%	7.0%
Natalizumab	3.6%	19.6%
Alemtuzumab	99.9%	99.3%

Sensitivity Analysis Results – Scenarios

Results from the scenario analyses can be found in Appendix Tables E17-E23. For the majority of pairwise comparisons, the scenario analyses did not yield major differences in conclusions from the base case. However, when using only 24-week NMA results, we note that the cost per QALY compared to generic glatiramer acetate for interferon β -1b 250 mcg (Extavia and Betaseron) decreased to approximately \$74,000 and \$127,000, respectively. Of note, including indirect costs did decrease resulting pairwise comparisons for costs per QALY and costs per life-year, but not substantially enough to change conclusions. Similarly, increased AE rates did not influence results.

Threshold Analysis Results

Prices for each drug that would achieve cost-effectiveness thresholds ranging from \$50,000 to \$150,000 per QALY gained are presented in Table 25, along with the wholesale acquisition cost per package. It was not possible to calculate a threshold price for ten of the DMTs at \$50,000/QALY, and for two of the DMTs at \$100,000/QALY. This was because even if the price of the DMT were \$0, the patient still accrued costs from second-line drugs and other care. As those other costs are particularly high relative to supportive care, it was not possible to decrease the WAC enough to reach the threshold. Note that the price of alemtuzumab would increase to reach these cost-effectiveness thresholds, as its cost-effectiveness at WAC is below \$50,000/QALY.

Table 25. Resulting Package Prices for Each DMT to Reach Cost per QALY Thresholds

DMT	WAC (per package)	\$50,000	\$100,000	\$150,000
Teriflunomide 14 mg	\$5,877	N/C; at \$0 WAC, ICER is \$106,877		\$974
Teriflunomide 7 mg	\$5,877	N/C; at \$0 WAC, ICEF	R is \$131,288	\$647
Interferon β-1a 30 mcg (Avonex)	\$6,287	N/C; at \$0 WAC, ICER is \$70,728	\$653	\$1,856
Interferon β-1b 250 mcg (Betaseron)	\$6,648	\$414	\$2,260	\$4,206
Glatiramer Acetate 20 mg (Copaxone)	\$7,114	N/C; at \$0 WAC, ICER is \$56,413	\$1,228	\$2,648
Interferon β-1b 250 mcg (Extavia)	\$5,947	\$429	\$2,443	\$4,457
Fingolimod	\$6,743	N/C; at \$0 WAC, ICER is \$59,305	\$1,464	\$3,402
Glatiramer Acetate 20 mg (Glatopa)	\$5,194	N/C; at \$0 WAC, ICER is \$56,413	\$1,621	\$3,463
Alemtuzumab	\$20,750	\$32,672	\$71,818	\$110,864
Peginterferon β-1a	\$6,287	N/C; at \$0 WAC, ICER is \$60,120	\$1,403	\$3,086
Interferon β-1a 22 mcg (Rebif)	\$6,629	N/C; at \$0 WAC, ICER is \$83,919	\$407	\$1,651
Interferon β-1a 44 mcg (Rebif)	\$6,629	N/C; at \$0 WAC, ICER is \$68,850	\$880	\$2,449
Dimethyl Fumarate	\$6,820	N/C; at \$0 WAC, ICER is \$80,239	\$1,014	\$3,613
Natalizumab	\$6,000	\$439	\$2,208	\$3,876
Daclizumab	\$6,833	\$1,266	\$2,862	\$4,458
Ocrelizumab (RRMS)*		\$10,604	\$34,251	\$57,899
Ocrelizumab (PPMS)*		\$3,429	\$7,721	\$12,013

N/C: Not calculable

^{*}Annual prices are presented for ocrelizumab because package prices are not currently available.

6.4 Prior Published Evidence on Costs and Cost-Effectiveness of DMTs for MS

We reviewed several cost-effectiveness models comparing different MS therapies and have summarized those that most closely resembled our model in structure, population, perspective, and setting.

A manufacturer-funded study by Hernandez et al. (2016) compared the cost-effectiveness of peginterferon β -1a 125 mcg versus interferon β -1a 44 mcg and glatiramer acetate 20 mg in RRMS patients. Peginterferon β -1a resulted in a slower rate of EDSS progression and more time spent in EDSS states below 7 versus the two comparators. Peginterferon β -1a dominated (i.e., had lower cost and better effectiveness) both interferon β -1a 44 mcg and glatiramer acetate 20 mg, and had the smallest EDSS change from baseline. While both the ICER and Hernandez models were similar in structure, one of the key differences between the two models was the time horizon: 10 years for the Hernandez model versus lifetime for the ICER model. When the time-horizon in the Hernandez model was extended to lifetime, peginterferon β -1a resulted in a cost-effectiveness ratio of approximately \$29,000 versus glatiramer acetate 20 mg (Copaxone). While there were other differences in model estimation (e.g., discontinuation rates, utilities), these findings are directionally consistent with those of the ICER model (i.e., effectiveness of peginterferon β -1a [9.1 QALYs] was greater than that of interferon β -1a 44 mcg and glatiramer acetate 20 mg [8.5 and 8.4 QALYs, respectively]).

Another manufacturer-funded study by Mauskopf et al. (2016) compared dimethyl fumarate to glatiramer acetate 20 mg and fingolimod in RRMS patients. Dimethyl fumarate dominated both comparators, with an incremental QALY gain of 0.45 and 0.36 and lower total costs by approximately \$71,000 and \$33,000 over glatiramer acetate and fingolimod, respectively. This model was similar to the ICER model in most aspects; however, there were several key differences between the two models. The Mauskopf model population was composed of 60% treatment-naïve and 40% treatment-experienced patients, whereas the ICER model population included only treatment-naïve patients. In addition, second-line DMT therapy was not included in the Mauskopf model, while it was included in the ICER model. Finally, Mauskopf et al. modeled treatment over a 20-year time horizon whereas ICER modeled treatment over a lifetime.

We reviewed three other US studies, all of which were modeled from a societal perspective and had shorter time horizons (maximum 10 years) compared to our model. Noyes et al. modeled a cohort of RRMS and SPMS patients over 10 years using data from a longitudinal MS study. ^{141,145-147} Indirect costs included those associated with unemployment periods, part-time employment, interruption in schooling, and absenteeism from work and school. The study included interferon β -1a 30 mcg, interferon β -1a (Rebif, dose unspecified), interferon β -1b 250mcg, and glatiramer acetate 20 mg. Ten-year costs were similar for all agents, ranging from \$467,000 to \$492,000. Other than

supportive care, glatiramer acetate 20 mg had the lowest number of QALYs accrued (6.5) over the 10 years, while interferon β -1a 30 mcg had the highest QALYs gained (6.7). Our model showed that interferon β -1a 22 mcg had the lowest number of QALYs gained (7.9), and interferon β -1b 250 mcg had the highest QALYs gained (9.1). This discrepancy may be a result of varying approaches to the two available dose strengths of Rebif (22 and 44 mcg); our model analyzed the doses separately, while it is unclear how Noyes approached the two doses. Furthermore, the QALY difference between drugs is greater in our model compared to the Noyes model due to the longer time horizon in our model.

Lee at al. developed a Markov model comparing fingolimod to interferon β -1a 30 mcg in RRMS patients over a 10-year time horizon. As in our model, fingolimod generated approximately 1 additional QALY versus interferon β -1a 30 mcg (6.77 versus 5.95) and was also more expensive. Finally, Zhang et al. modeled RRMS patients over a five-year time horizon, comparing fingolimod, interferon β -1a 30 mcg, teriflunomide 14 mg, and dimethyl fumarate. While a societal perspective was employed in this model, productivity costs were not included, under the assumption that these effects were captured in the QALY estimate. Drug costs in the model were obtained from the Federal Supply Schedule list. When the four drugs are ranked by cost, fingolimod was the most expensive of the four in both this model and the ICER model, while the least expensive was dimethyl fumarate in the Zhang model as opposed to teriflunomide in ours.

6.5 Potential Budget Impact

We used the cost-effectiveness model to estimate the potential budget impact of two new treatments in the RRMS patient population: daclizumab, which received FDA approval in 2016, and ocrelizumab, for which FDA approval is pending. As the price of ocrelizumab is currently unknown, we used prices required to achieve WTP thresholds of \$150,000, \$100,000 and \$50,000 per QALY in our estimates of budget impact. We also assessed the potential budget impact of ocrelizumab as the first agent likely to secure FDA approval in PPMS, using the threshold prices listed above. We did not include other therapies modeled above in this potential budget impact analysis, given their established presence in the market.

Potential Budget Impact Model: Methods

We used results from the same model employed for the cost-effectiveness analyses to estimate total potential budget impact, calculating incremental health care costs (including drug costs) minus any offsets in these costs from averted health care events. In the RRMS cohort, potential budget impact was defined as the total incremental cost of using daclizumab versus natalizumab for the treated population, as clinical input suggested that natalizumab was the most likely competitor for daclizumab market share in the near term. Although daclizumab has been available in the market for several months, we considered its budget impact from an *ex ante* perspective for this analysis;

that is, treating it as new to market. We also estimated the potential budget impact of using ocrelizumab, using prices required to achieve WTP thresholds of \$150,000, \$100,000 and \$50,000 per QALY. For RRMS patients, we assumed that the share of patients using ocrelizumab would be drawn equally from three existing competitors: natalizumab, fingolimod, and dimethyl fumarate. For the PPMS population, we analyzed the potential budget impact of using ocrelizumab rather than best supportive care, as there is no DMT currently approved for these patients. All costs were undiscounted and estimated over one- and five-year time horizons. The five-year timeframe was of primary interest, given the potential for cost offsets to accrue over time.

The potential budget impact analysis included the entire candidate population for treatment, which consisted of adults with RRMS, whether DMT treatment-naïve or -experienced. We recognize that in reality, both new treatments and the drugs they are displacing will have only a share of the potential market; in the absence of any rigorous projection on what changes in market share would look like, we felt it best to document the percentage of all possible patients who would have access to new medications without crossing the budget impact threshold in order to compare new interventions on a consistent scale. Because no DMT has been approved for use in PPMS patients, we assumed all patients in this cohort to be DMT treatment-naïve. To estimate the size of the potential candidate population for treatment with daclizumab or ocrelizumab in the RRMS cohort, we first determined the estimated prevalence of MS in the US, which has been reported as 142.9 cases per 100,000 persons.³⁴ We estimated the proportion of MS patients following the RRMS disease course to be 85%, with the remaining 15% following the PPMS disease course.¹ Applying these proportions to the projected 2016 US population resulted in an estimate of 410,900 RRMS patients and 72,500 PPMS patients in the US over a five-year period.

ICER's methods for estimating potential budget impact are described in detail elsewhere and have recently been updated. The intent of our revised approach to budgetary impact is to document the percentage of patients that could be treated at selected prices without crossing a budget impact threshold that is aligned with overall growth in the US economy.

Briefly, we evaluate a new drug or device that would take market share from one or more drugs, and calculate the blended budget impact associated with displacing use of existing therapies with the new intervention. In this analysis, we assumed that in the RRMS population, daclizumab would take market share entirely from natalizumab, and that ocrelizumab would take market share from natalizumab, fingolimod and dimethyl fumarate in equal shares. In the PPMS population, we assumed ocrelizumab would take market share from supportive care in the absence of other treatments for PPMS. For daclizumab, we tested the potential budget impact by assuming different unit price points – namely WAC, discounted WAC as calculated from the SSR database, and prices to reach WTP thresholds of \$50,000/QALY, \$100,000/QALY and \$150,000/QALY, against the calculated discounted price of natalizumab. We assumed daclizumab to take market share from natalizumab based on expert opinion that its most likely place in therapy is among patients who are positive for

the JC virus and would otherwise be candidates for natalizumab. For ocrelizumab, we assumed only prices to reach the WTP thresholds given that the drug is not yet approved and no price has been set, and compared against the calculated discounted prices of natalizumab, fingolimod and dimethyl fumarate as the drugs it is most likely to displace in the RRMS population, and against the cost of supportive care in the PPMS population.

Using this approach to estimate potential budget impact, we then compared our estimates to an updated budget impact threshold that represents a potential trigger for policy mechanisms to improve affordability, such as changes to pricing, payment, or patient eligibility. As described in ICER's methods presentation (http://icer-review.org/wp-content/uploads/2016/02/Value-Assessment-Framework-slides-for-July-29-webinar-FINAL-corrected-8-22-1.pdf), this threshold is based on an underlying assumption that health care costs should not grow much faster than growth in the overall national economy. From this foundational assumption, our potential budget impact threshold is derived using an estimate of growth in US gross domestic product (GDP) +1%, the average number of new drug approvals by the FDA each year, and the contribution of spending on retail and facility-based drugs to total health care spending. The original annual threshold was \$904 million, which has now been updated to \$915 million for 2017-18. Calculations are performed as shown in Table 26.

For 2017-18, therefore, the five-year annualized potential budget impact threshold that should trigger policy actions to manage affordability is calculated to total approximately \$915 million per year for new drugs.

Table 26. Calculation of Potential Budget Impact Threshold

Item	Parameter	Estimate	Source
1	Growth in US GDP, 2017 (est.) +1%	3.20%	World Bank, 2016
2	Total health care spending, 2016 (\$)	\$2.71 trillion	CMS NHE, 2014
3	Contribution of drug spending to total health care spending (%)	17.7%	CMS National Health Expenditures (NHE), 2016; Altarum Institute, 2014
4	Contribution of drug spending to total health care spending (\$) (Row 2 x Row 3)	\$479 billion	Calculation
5	Annual threshold for net health care cost growth for ALL new drugs (Row 1 x Row 4)	\$15.3 billion	Calculation
6	Average annual number of new molecular entity approvals, 2013-2014	33.5	FDA, 2016
7	Annual threshold for average cost growth per individual new molecular entity (Row 5 ÷ Row 6)	\$457.5 million	Calculation
8	Annual threshold for estimated potential budget impact for each individual new molecular entity (doubling of Row 7)	\$915 million	Calculation

Potential Budget Impact Model: Results

When treating the eligible RRMS cohort with daclizumab, the weighted potential budgetary impact results in cost-savings ranging from approximately \$62,900 when using the price to reach the \$150,000 per QALY WTP threshold, to approximately \$177,000 when using the price to reach the \$50,000 per QALY WTP threshold. When using WAC, the annual potential budgetary impact exceeded the threshold of \$915 million by 81%. As shown in the Figure 8 below, 100% of patients could be treated in a given year without crossing the ICER budget impact threshold at the three WTP threshold prices as well as discounted WAC, while 55% of the population could be treated without crossing the threshold at the full WAC. The disparate findings between full and discounted WAC are somewhat surprising on initial review, as there is only an approximate \$350 difference between WAC and discounted WAC per dose; however, this translates into a greater than \$4,000 difference on an annual basis and is compounded further by both total population size and the 5-year time horizon.

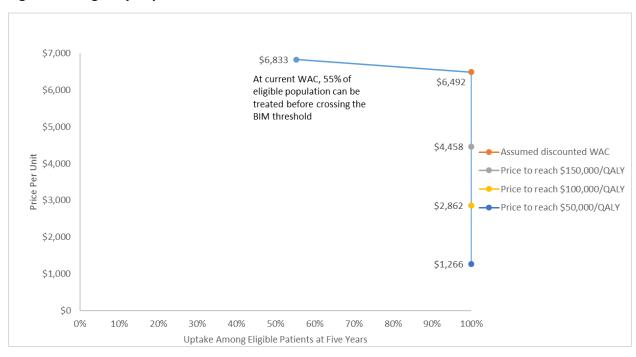


Figure 8. Budgetary Impact of Daclizumab in RRMS Patients

Table 27 below illustrates the per-patient budget impact calculations for ocrelizumab in more detail, based on the price to achieve a WTP threshold of \$150,000/QALY for ocrelizumab and the DMTs it would displace. At that price, ocrelizumab would result in cost-savings relative to the displaced DMTs; cost savings would increase at threshold prices to achieve \$50,000 and \$100,000 per QALY gained.

Table 27. Per-Patient Budget Impact of Ocrelizumab in RRMS Population, Using Price to Reach WTP Threshold of \$150,000/QALY Gained

	Avg. Annual Per-Patient BI (Over 5-year Time Horizon)	Weighted Avg. Annual Per-Patient BI (over 5-year Horizon)
Ocrelizumab	\$65,992	\$197,132
Natalizumab+Fingolimod+Dimethyl fumarate*	\$81,600	\$242,605
Net	-\$15,608 [†]	-\$45,473 [†]

^{*}Weighted equally among all three drugs

Finally, when treating the eligible PPMS cohort with ocrelizumab, the weighted annual average potential budgetary impact per-patient ranged from approximately \$16,300 using the price to achieve a WTP threshold of \$50,000/QALY to approximately \$38,350 using the price to achieve a WTP threshold of \$150,000/QALY. However, the annual budgetary impact of treating the entire PPMS cohort across all WTP threshold prices did not exceed the \$915 million threshold, reaching 26% of the budget impact threshold at the price to reach \$50,000/QALY, 43% at the \$100,000/QALY price, and 61% at the \$150,000/QALY price, due to the assumed small size of the candidate population for PPMS treatment in any given year (14,500 patients).

6.6 Value-based Benchmark Prices

Our value-based benchmark prices for each MS treatment are provided in Table 28. As noted in the ICER methods document, the value-based benchmark price for a drug is defined as the price range that would achieve cost-effectiveness ratios between \$100,000 and \$150,000 per QALY gained. Because the estimated cost-effectiveness of alemtuzumab was well below \$100,000 per QALY in our base case, its price could be increased substantially before reaching \$100,000 per QALY or \$150,000 per QALY WTP thresholds. For most DMTs, the discounts required to achieve both WTP threshold prices are greater than the current discounted WAC except for glatiramer acetate 20 mg (Glatopa) and interferon β -1b 250 mcg (Extavia). For both drugs, the price required to reach the \$150,000 per QALY threshold is greater than the discounted WAC (Table 28). As mentioned above, there was no price for which teriflunomide would achieve a \$100,000/QALY threshold.

[†]Indicates cost-saving

Table 28. Value-based Price Benchmarks for MS Disease-Modifying Therapies

DMT	WAC (per package)	Cost to achieve \$100,000/QALY	Cost to achieve \$150,000/QALY	Discount from WAC to reach WTP threshold
Teriflunomide 14 mg	\$5,877	N/C	\$974	83%
Teriflunomide 7 mg	\$5,877	N/C	\$647	89%
Interferon β-1a 30 mcg (Avonex)	\$6,287	\$653	\$1,856	70% to 90%
Interferon β-1b 250 mcg	\$6,648	\$2,260	\$4,206	37% to 66%
(Betaseron)				
Glatiramer Acetate 20 mg	\$7,114	\$1,228	\$2,648	63% to 83%
(Copaxone)				
Interferon β-1b 250 mcg (Extavia)	\$5,947	\$2,443	\$4,457	25% to 59%
Fingolimod	\$6,743	\$1,464	\$3,402	50% to 78%
Glatiramer Acetate 20 mg (Glatopa)	\$5,194	\$1,621	\$3,463	33% to 69%
Alemtuzumab	\$20,750	\$71,818	\$110,864	246% to 434% increase
Peginterferon β-1a	\$6,287	\$1,403	\$3,086	51% to 78%
Interferon β-1a 22 mcg (Rebif)	\$6,629	\$407	\$1,651	75% to 94%
Interferon β-1a 44 mcg (Rebif)	\$6,629	\$880	\$2,449	63% to 87%
Dimethyl Fumarate	\$6,820	\$1,014	\$3,613	47% to 85%
Natalizumab	\$6,000	\$2,208	\$3,876	35% to 63%
Daclizumab	\$6,833	\$2,862	\$4,458	35% to 58%
Ocrelizumab (RRMS)*		\$34,251	\$57,899	
Ocrelizumab (PPMS)*		\$7,721	\$12,013	

^{*}Annual prices are presented for ocrelizumab because package prices are not currently available.

N/C: Not calculable; there is no price that can achieve a given cost-effectiveness threshold, even at \$0

6.7 Summary and Comment

We estimated the cost-effectiveness of various DMTs over a lifetime time horizon for adult patients with RRMS and PPMS. Patient time spent in EDSS-defined health states was summed to provide estimates of life expectancy and quality-adjusted life expectancy. Annual net health care costs, including drug acquisition, administration, and monitoring costs, were summed to estimate lifetime costs for each DMT. We used a natural history transition matrix and applied a relative risk for each therapy to derive DMT-specific transition probabilities between EDSS states, and included each treatment's effect on relapse rates.

Compared to supportive care for RRMS, costs per additional QALY were estimated to total approximately \$35,000 for alemtuzumab, but exceeded the commonly-cited threshold of \$150,000 per QALY for all other DMTs (range: \$185,000 for Interferon β -1b 250 mcg [Extavia] to \$341,000 for interferon β -1a 22 mcg). Alemtuzumab provided the highest number of QALYs gained while costing

less than all other treatments except supportive care. The newest approved agent, daclizumab, produced an estimate of approximately \$223,000 per QALY gained. Among patients with PPMS, ocrelizumab was estimated to produce an additional 0.6 QALY or an additional 0.5 life year compared to supportive care, based on relatively modest clinical benefits in this more difficult-to-treat population.

When compared to generic glatiramer acetate 20 mg, five DMTs were dominated (i.e., more costly and less effective) or cost-increasing (i.e., more costly with the same effectiveness). Among those DMTs with better health outcomes compared to generic glatiramer acetate 20 mg, costs per additional QALY ranged from approximately \$148,300 per QALY for interferon β -1b 250 mcg (Extavia) to approximately \$10.4 million per QALY for interferon β -1a 44 mcg. Alemtuzumab was dominant, meaning that projected costs were lower and projected QALYs and life-years were higher than for glatiramer acetate. The cost-effectiveness of daclizumab was estimated to be approximately \$255,000 per QALY gained.

Our budget impact estimates for daclizumab suggest that its use in RRMS will not increase costs to a level that has the potential to strain health-system budgets at our assumed discounted price, but that only 55% of the population could be treated without crossing the threshold at the full WAC. Our potential budget impact estimates indicate that all eligible RRMS and PPMS patients could be treated with ocrelizumab at its \$150,000 per QALY gained price without exceeding the budget impact threshold.

We have attempted to model MS treatment to both reflect clinical practice and accommodate the limits of available data. The latter has placed some restrictions on how accurately we can model MS treatment. There were several key limitations of our analysis.

First, 24-week disability progression data were not available for all clinical trials. Second, natural history data for RRMS and SPMS patients by EDSS state are from older studies. The populations from this dataset may not represent current MS populations due to differences in diagnostic and treatment practices. As a high-quality data source does not exist for untreated patients beginning DMTs, we were limited to mixed populations of DMT-naïve and DMT-experienced patients to capture the most generalizable population. Third, clinical practice guidelines have not yet reached consensus on treatment sequencing for RRMS. Though some DMTs are more often used for later lines of therapy, none of their indications exclude first-line use, and there is no single treatment pattern for later lines of therapy. For these reasons, we chose to model an aggregate of the most commonly used second-line treatments to reflect continued costs and health gains after discontinuing first-line treatment. However, given the variety of second-line treatment options, this may not be representative of the treatment patterns for all patients. Fourth, limited data exist for PPMS patients, including natural history data in a format relevant to our model structure, costs by EDSS state, and utilities by EDSS state. For these inputs, we assumed PPMS to be similar to SPMS. If

there are major differences between these patient populations beyond relapse rates, the relevance of our findings for PPMS may be limited. In addition, the net prices used in our analysis are meant to reflect an estimate of average discount from WAC, but it should be noted that discounts vary widely across payers and that specific discount information is usually not publicly available. Finally, the cost of ocrelizumab has not yet been released; we therefore were not able to calculate a base case estimate of cost-effectiveness for this DMT.

Conclusions

In summary, our analyses indicate that the DMTs of interest in this evaluation uniformly and substantially improved health outcomes compared to best supportive care, but demonstrated mixed results compared to generic glatiramer acetate. These outcomes come at a high relative cost. In almost all cases, pairwise results were well above commonly cited thresholds for cost-effectiveness. The notable exception to this finding was alemtuzumab, which consistently demonstrated improved health outcomes and good value compared to both supportive care and generic glatiramer acetate 20 mg. The costs of alemtuzumab were much lower than other DMTs, as it does not require continuous dosing over time and the manufacturer covers the costs of laboratory monitoring, which led to lower incremental cost-effectiveness ratios. Caution in considering the cost-effectiveness findings for alemtuzumab is required, however, given the safety concerns relevant to this DMT described in Section 4 of this report and elsewhere.

This is the first CTAF review of DMTs for MS.

References

- 1. Harrison DM. In the clinic. Multiple sclerosis. *Ann Intern Med.* 2014;160(7):ITC4-2-ITC4-18; quiz ITC14-16.
- 2. Niedziela N, Adamczyk-Sowa M, Pierzchala K. Epidemiology and clinical record of multiple sclerosis in selected countries: a systematic review. *The International journal of neuroscience*. 2014;124(5):322-330.
- 3. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. *Arch Phys Med Rehabil.* 2014;95(5):986-995 e981.
- 4. Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. *Brain : a journal of neurology*. 1989;112 (Pt 1):133-146.
- 5. Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. *Handbook of clinical neurology.* 2014;122:231-266.
- National Multiple Sclerosis Society. Primary progressive MS (PPMS). http://www.nationalmssociety.org/What-is-MS/Types-of-MS/Primary-progressive-MS.

 Accessed July 13, 2016.
- 7. FDA Grants Priority Review for Genentech's OCREVUS (Ocrelizumab) Biologic's License Application [press release]. June 27 2016.
- 8. FDA Extends Review of Application for OCREVUS™ [press release]. 2016.
- 9. Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. *Annals of neurology.* 2009;66(4):460-471.
- 10. Dong-Si T, Gheuens S, Gangadharan A, et al. Predictors of survival and functional outcomes in natalizumab-associated progressive multifocal leukoencephalopathy. *J Neurovirol*. 2015;21(6):637-644.
- 11. Poulos C, Kinter E, Yang JC, Bridges JF, Posner J, Reder AT. Patient Preferences for Injectable Treatments for Multiple Sclerosis in the United States: A Discrete-Choice Experiment. *The patient*. 2016;9(2):171-180.
- 12. Utz KS, Hoog J, Wentrup A, et al. Patient preferences for disease-modifying drugs in multiple sclerosis therapy: a choice-based conjoint analysis. *Therapeutic Advances in Neurological Disorders*. 2014;7(6):263-275.
- 13. Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. *The New England journal of medicine*. 1987;317(7):408-414.
- 14. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. *New England Journal of Medicine*. 2017;376(3):221-234.
- European Medicines Agency. Guideline on clinical investigation of medicinal products for the treatment of Multiple Sclerosis, Rev. 2.26. 2015.
 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/03/WC500185161.pdf. Accessed November 2, 2016.
- 16. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. *Annals of neurology*. 2013;73(6):705-713.

- 17. Khan O, Rieckmann P, Boyko A, et al. Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2016.
- 18. Rudick RA, Miller D, Hass S, et al. Health-related quality of life in multiple sclerosis: effects of natalizumab. *Annals of neurology*. 2007;62(4):335-346.
- 19. Zivadinov R, Zorzon M, Tommasi MA, et al. A longitudinal study of quality of life and side effects in patients with multiple sclerosis treated with interferon beta-1a. *Journal of the neurological sciences*. 2003;216(1):113-118.
- 20. Willis MD, Harding KE, Pickersgill TP, et al. Alemtuzumab for multiple sclerosis: Long term follow-up in a multi-centre cohort. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2016;22(9):1215-1223.
- 21. Inusah S, Sormani MP, Cofield SS, et al. Assessing changes in relapse rates in multiple sclerosis. *Multiple sclerosis* (Houndmills, Basingstoke, England). 2010;16(12):1414-1421.
- 22. Nicholas R, Straube S, Schmidli H, Pfeiffer S, Friede T. Time-patterns of annualized relapse rates in randomized placebo-controlled clinical trials in relapsing multiple sclerosis: a systematic review and meta-analysis. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2012;18(9):1290-1296.
- 23. Rover C, Nicholas R, Straube S, Friede T. Changing EDSS Progression in Placebo Cohorts in Relapsing MS: A Systematic Review and Meta-Regression. *PloS one*. 2015;10(9):e0137052.
- 24. Steinvorth SM, Rover C, Schneider S, Nicholas R, Straube S, Friede T. Explaining temporal trends in annualised relapse rates in placebo groups of randomised controlled trials in relapsing multiple sclerosis: systematic review and meta-regression. *Multiple sclerosis* (Houndmills, Basingstoke, England). 2013;19(12):1580-1586.
- 25. Stellmann JP, Neuhaus A, Herich L, et al. Placebo cohorts in phase-3 MS treatment trials predictors for on-trial disease activity 1990-2010 based on a meta-analysis and individual case data. *PloS one*. 2012;7(11):e50347.
- 26. Tolley K, Hutchinson M, You X, et al. A Network Meta-Analysis of Efficacy and Evaluation of Safety of Subcutaneous Pegylated Interferon Beta-1a versus Other Injectable Therapies for the Treatment of Relapsing-Remitting Multiple Sclerosis. *PloS one.* 2015;10(6):e0127960.
- 27. Fogarty E, Schmitz S, Tubridy N, Walsh C, Barry M. Comparative efficacy of disease-modifying therapies for patients with relapsing remitting multiple sclerosis: Systematic review and network meta-analysis. *Mult Scler Relat Disord*. 2016;9:23-30.
- 28. Tramacere I, Del Giovane C, Salanti G, D'Amico R, Filippini G. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. *The Cochrane database of systematic reviews.* 2015;9:Cd011381.
- 29. Tran K, Milev S, Jabr MF, et al. Comparative Clinical and Cost-Effectiveness of Drug Therapies for Relapsing-Remitting Multiple Sclerosis. *Comparative Clinical and Cost-Effectiveness of Drug Therapies for Relapsing-Remitting Multiple Sclerosis*. Ottawa (ON)2013.
- 30. Einarson TR, Bereza BG, Machado M. Comparative effectiveness of interferons in relapsing-remitting multiple sclerosis: a meta-analysis of real-world studies. *Current medical research and opinion.* 2017:1-15.

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

- 31. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. *The New England journal of medicine*. 2006;354(9):899-910.
- 32. Ridyard CH, Dawoud DM, Tuersley LV, Hughes DA. A Systematic Review of Patients' Perspectives on the Subcutaneous Route of Medication Administration. *The patient*. 2016.
- 33. Ting J, Liu Y, Petrillo J, Giannattasio G, Sabatella G. Treatment Satisfaction With Disease Modifying Therapies In Multiple Sclerosis: A Systematic Review of Studies Using The Treatment Satisfaction Questionnaire For Medication (Tsqm). Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2015;18(7):A760-761.
- 34. Dilokthornsakul P, Valuck RJ, Nair KV, Corboy JR, Allen RR, Campbell JD. Multiple sclerosis prevalence in the United States commercially insured population. *Neurology*. 2016;86(11):1014-1021.
- 35. Bermel RA, You X, Foulds P, et al. Predictors of long-term outcome in multiple sclerosis patients treated with interferon beta. *Annals of neurology*. 2013;73(1):95-103.
- 36. Bsteh G, Ehling R, Lutterotti A, et al. Long Term Clinical Prognostic Factors in Relapsing-Remitting Multiple Sclerosis: Insights from a 10-Year Observational Study. *PloS one*. 2016;11(7):e0158978.
- 37. Prosperini L, Gallo V, Petsas N, Borriello G, Pozzilli C. One-year MRI scan predicts clinical response to interferon beta in multiple sclerosis. *European journal of neurology*. 2009;16(11):1202-1209.
- 38. Scalfari A, Neuhaus A, Degenhardt A, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. *Brain : a journal of neurology*. 2010;133(Pt 7):1914-1929.
- 39. Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y. Impact of multiple sclerosis relapses on progression diminishes with time. *Neurology*. 2009;73(20):1616-1623.
- 40. von Gumberz J, Mahmoudi M, Young K, et al. Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting. *PeerJ.* 2016;4:e2442.
- 41. Kappos L, Edan G, Freedman MS, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. *Neurology*. 2016;87(10):978-987.
- 42. Freedman MS, Wolinsky JS, Wamil B, et al. Teriflunomide added to interferon-beta in relapsing multiple sclerosis: a randomized phase II trial. *Neurology*. 2012;78(23):1877-1885.
- 43. Goodman AD, Rossman H, Bar-Or A, et al. GLANCE: results of a phase 2, randomized, double-blind, placebo-controlled study. *Neurology*. 2009;72(9):806-812.
- 44. Lublin FD, Cofield SS, Cutter GR, et al. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. *Annals of neurology*. 2013;73(3):327-340.
- 45. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. *The New England journal of medicine*. 2006;354(9):911-923.
- 46. Wynn D, Kaufman M, Montalban X, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. *The Lancet Neurology*. 2010;9(4):381-390.
- 47. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). *Neurology*. 1983;33(11):1444-1452.

- 48. Hoadley J, Cubanci J, Neuman T. *It Pays to Shop: Variation in Out-of-Piocket Costs for Medicare Part D Enrollees in 2016.* The Henry J. Kaiser Family Foundation; December 2015.
- 49. California Department of Health Care Services. Injections: Drug A-D Policy. 2015.
- 50. California Department of Health Care Services. Injections: Drugs N R Policy. 2015.
- 51. Aetna. Specialty Pharmacy Clinical Policy Bulletins Aetna Non-Medicare Prescription Drug Plan; Subject: Multiple Sclerosis. 2016; http://www.aetna.com/products/rxnonmedicare/data/2016/CNS/multiple_sclerosis.html. Accessed November 13, 2016.
- 52. Aetna. 2017 Aetna Drug Search for Value Five Tier Pharmacy Drug Guide. 2016; https://client.formularynavigator.com/Search.aspx?siteCode=0394671891. Accessed November 13, 2016.
- 53. Anthem. Drug list Five Tier Drug Plan. 2016; https://fm.formularynavigator.com/FBO/143/National 5 Tier ABC.pdf. Accessed 2017, January 22.
- 54. Cigna. 2017 Value 3 Tier Drug List. 2016; https://www.cigna.com/prescription-drug-list?consumerID=cigna&indicator=nonIFP&pdlYearType=CD. Accessed January 22, 2017.
- 55. Humana. Provider Drug List Search (Rx5 Plus). 2017; http://apps.humana.com/UnsecuredDrugListSearch/Search.aspx. Accessed 2017, January 22.
- 56. UnitedHealthcare. 2017 Prescription Drug List. 2017;
 <a href="https://www.unitedhealthcareonline.com/ccmcontent/ProviderII/UHC/en-US/Assets/ProviderStaticFiles/ProviderStaticFilesPdf/Tools%20and%20Resources/Pharmacy%20Resources/UHC Physician PDL Booklet 2017.pdf. Accessed January 22, 2017.
- 57. Health Net. Pharmacy Information: 3-Tier with Specialty Drug List. 2016; https://www.healthnet.com/portal/provider/content/iwc/provider/unprotected/pharmacy_info/book/pharmacy_information.action. Accessed January 22, 2017.
- 58. Blue Shield of California. Blue Shield Standard Drug Formulary: January 2017. 2016; https://fm.formularynavigator.com/MemberPages/pdf/CommercialStandard2017_Closed_1 0143 BS%20CA%20Standard 2810.pdf. Accessed January 22, 2017.
- 59. Blue Shield of California. Specialty Drug List for Standard Drug Formulary. 2016; https://www.blueshieldca.com/bsca/documents/pharmacy/Specialty_Drugs_List_Standard_Formulary.pdf. Accessed January 22, 2017.
- 60. Humana. Glatopa (glatiramer acetate injection) Pharmacy Coverage Policy. 2016.
- 61. Anthem. Medical Policy: Daclizumab (Zinbryta). 2016; https://www11.anthem.com/ca/medicalpolicies/policies/mp pw c191086.htm. Accessed January 22, 2017.
- 62. Humana. Zinbryta (dazlicumab) Pharmacy Coverage Policy. 2016.
- 63. Anthem. Clinical UM Guideline: Natalizumab (Tysabri). 2016; https://www11.anthem.com/ca/medicalpolicies/guidelines/gl pw c178382.htm. Accessed 2016, November 13.
- 64. Cigna. Cigna Drug and Biologic Coverage Policy; Subject: Multiple Sclerosis Therapy. 2016; https://cignaforhcp.cigna.com/public/content/pdf/coveragePolicies/pharmacy/ph_1402_pharmacy/coverageposition multiple sclerosis.pdf. Accessed November 13, 2016.
- 65. Health Net. Prior Authorization Protocol: CIMZIAR (certolizumab pegol), ENBRELR (etanercept), HUMIRAR (adalimumab), KINERETR (anakinra), SIMPONIR, SIMPONIR ARIATM

- (golimumab), STELARATM (ustekinumab), REMICADE (infliximab), COSENTYX (secukinumab), OTEZLA (apremilast), ORENCIA abatacept), ACTEMRA (tocilizumab), ENTYVIO (vedolizumab), TYSABRI (natalizumab). 2016.
- 66. Humana. Lemtrada (alemtuzumab) Pharmacy Coverage Policy.
- 67. UnitedHealthcare. Drug Policy: Lemtrada (alemtuzumab). 2016.
- 68. Anthem. Medical Policy: Rituximab (Rituxan). 2016; https://www11.anthem.com/ca/medicalpolicies/policies/mp pw c103932.htm. Accessed November 13, 2016.
- 69. Humana. Rituxan (rituximab) Pharmacy Coverage Policy. 2016.
- 70. UnitedHealthcare. Drug Policy: Rituxan (rituximab). 2016.
- 71. Neurology AAo. Evidence-based practice guideline: Disease-modifying Therapies for Multiple Sclerosis (Draft). 2016.
- 72. Canadian Agency for Drugs and Technologies in Health. *CADTH Therapeutic Review: Recommendations for Drug Therapies for Relapsing-Remitting Multiple Sclerosis.* Ottawa October 2013.
- 73. MS Coalition. The Use of Disease-Modifying Therapies in Multiple Sclerosis: Principles and Current Evidence. 2016.
- 74. National Institute for Health and Care Excellence (NICE). Managing multiple sclerosis. https://pathways.nice.org.uk/pathways/multiple-sclerosis/managing-multiple-sclerosis.xml&content=view-node%3Anodes-disease-modifying-therapies. Accessed November 13, 2016.
- 75. Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. *Ann Intern Med.* 1997;126(5):376-380.
- 76. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009;151(4):264-269, w264.
- 77. Agency for Healthcare Research and Quality. *U.S. Preventive Services Task Force Procedure Manual.* 2008.
- 78. Ollendorf DA, Pearson SD. An integrated evidence rating to frame comparative effectiveness assessments for decision makers. *Medical care*. 2010;48(6 Suppl):S145-152.
- 79. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). *Annals of neurology*. 1996;39(3):285-294.
- 80. Kappos L, Radue EW, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. *The New England journal of medicine*. 2010;362(5):387-401.
- 81. Gold R, Giovannoni G, Selmaj K, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. *Lancet* (*London, England*). 2013;381(9884):2167-2175.
- 82. Kappos L, Wiendl H, Selmaj K, et al. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. *The New England journal of medicine*. 2015;373(15):1418-1428.
- 83. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. *The New England journal of medicine*. 2008;358(7):676-688.
- 84. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. *The New England journal of medicine*. 2010;362(5):402-415.

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

- 85. Vermersch P, Czlonkowska A, Grimaldi LM, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2014;20(6):705-716.
- 86. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. *The New England journal of medicine*. 2012;367(12):1087-1097.
- 87. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. *Lancet (London, England)*. 2012;380(9856):1819-1828.
- 88. Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. *The New England journal of medicine*. 2008;359(17):1786-1801.
- 89. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. *Lancet* (*London, England*). 2012;380(9856):1829-1839.
- 90. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. *New England Journal of Medicine*. 2017;376(3):209-220.
- 91. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. *Neurology*. 1993;43(4):655-661.
- 92. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. *Neurology*. 1995;45(7):1268-1276.
- 93. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. *Lancet (London, England)*. 1998;352(9139):1498-1504.
- 94. Evidence of interferon beta-1a dose response in relapsing-remitting MS: the OWIMS Study. The Once Weekly Interferon for MS Study Group. *Neurology.* 1999;53(4):679-686.
- 95. Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebocontrolled, phase 3 trial. *The Lancet Neurology.* 2014;13(6):545-556.
- 96. Confavreux C, O'Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. *The Lancet Neurology.* 2014;13(3):247-256.
- 97. De Stefano N, Curtin F, Stubinski B, et al. Rapid benefits of a new formulation of subcutaneous interferon beta-1a in relapsing-remitting multiple sclerosis. *Multiple sclerosis* (Houndmills, Basingstoke, England). 2010;16(7):888-892.
- 98. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. *The New England journal of medicine*. 2012;367(12):1098-1107.
- 99. O'Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. *The New England journal of medicine*. 2011;365(14):1293-1303.
- 100. Vollmer TL, Sorensen PS, Selmaj K, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. *J Neurol*. 2014;261(4):773-783.

- 101. Sormani MP, Bonzano L, Roccatagliata L, Cutter GR, Mancardi GL, Bruzzi P. Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. *Annals of neurology*. 2009;65(3):268-275.
- 102. Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a metaanalysis of randomised trials. *The Lancet Neurology*. 2013;12(7):669-676.
- 103. Goodin DS, Traboulsee A, Knappertz V, et al. Relationship between early clinical characteristics and long term disability outcomes: 16 year cohort study (follow-up) of the pivotal interferon beta-1b trial in multiple sclerosis. *Journal of neurology, neurosurgery, and psychiatry.* 2012;83(3):282-287.
- 104. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. *The New England journal of medicine*. 2012;366(20):1870-1880.
- 105. Cohen JA, Khatri B, Barkhof F, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. *Journal of neurology, neurosurgery, and psychiatry.* 2016;87(5):468-475.
- 106. Cofield SS, Lublin F, Cutter G, Gustafson T, Wolinsky JS. Functional System Changes Associated with Relapse: The CombiRx Experience *Neurology*. 2015;84(14):285.
- 107. Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. *BMC neurology*. 2014;14:58.
- 108. Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. *Annals of neurology*. 2016;79(6):950-958.
- 109. Sormani MP, Bonzano L, Roccatagliata L, Mancardi GL, Uccelli A, Bruzzi P. Surrogate endpoints for EDSS worsening in multiple sclerosis. A meta-analytic approach. *Neurology*. 2010;75(4):302-309.
- 110. Chevalier J, Chamoux C, Hammes F, Chicoye A. Cost-Effectiveness of Treatments for Relapsing Remitting Multiple Sclerosis: A French Societal Perspective. *PloS one*. 2016;11(3):e0150703.
- 111. Chilcott J, McCabe C, Tappenden P, et al. Modelling the cost effectiveness of interferon beta and glatiramer acetate in the management of multiple sclerosis. *British Medical Journal (England)*. 2003;326:522-525.
- 112. National Institute for Health and Care Excellence. Dimethyl fumarate for relapsing-remitting multiple sclerosis. 2014.
- 113. Gani R, Giovannoni G, Bates D, Kemball B, Hughes S, Kerrigan J. Cost-effectiveness analyses of natalizumab (Tysabri) compared with other disease-modifying therapies for people with highly active relapsing-remitting multiple sclerosis in the UK. *PharmacoEconomics*. 2008;26:617-627.
- 114. Maruszczak MJ, Montgomery SM, Griffiths MJ, Bergvall N, Adlard N. Cost-utility of fingolimod compared with dimethyl fumarate in highly active relapsing-remitting multiple sclerosis (RRMS) in England. *J Med Econ.* 2015;18(11):874-885.
- 115. Su W, Kansal A, Vicente C, Deniz B, Sarda S. The cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis in Canada. *J Med Econ.* 2016;19(7):718-727.

- 116. Tappenden P, McCabe C, Chilcott J, et al. Cost-effectiveness of disease-modifying therapies in the management of multiple sclerosis for the Medicare population. *Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research.* 2009;12(5):657-665.
- 117. Mauskopf J, Fay M, Iyer R, Sarda S, Livingston T. Cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing forms of multiple sclerosis in the United States. *Journal of Medical Economics.* 2016;6998:1-11.
- 118. Genentech I. Data on File.
- 119. Sanofi Genzyme. Teriflunomide US adaptation for AMCP dossiers.
- 120. Sanofi Genzyme. Data on File.
- 121. United States Bureau of Labor Statistics. Consumer Price Index All Urban Consumers. 2016; http://data.bls.gov/timeseries/CUUR0000SAM?output_view=pct_12mths. Accessed August 20, 2016.
- 122. Palace J, Bregenzer T, Tremlett H, et al. UK multiple sclerosis risk-sharing scheme: a new natural history dataset and an improved Markov model. *BMJ open.* 2014;4(1):e004073.
- 123. Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary progressive multiple sclerosis. *Neurology*. 2009;73(23):1996-2002.
- 124. Patzold U, Pocklington PR. Course of multiple sclerosis. First results of a prospective study carried out of 102 MS patients from 1976-1980. *Acta neurologica Scandinavica*. 1982;65(4):248-266.
- 125. Nickerson M, Cofield SS, Tyry T, Salter AR, Cutter GR, Marrie RA. Impact of multiple sclerosis relapse: The NARCOMS participant perspective. *Mult Scler Relat Disord*. 2015;4(3):234-240.
- 126. CDC/NCHS National Vital Statistics System. Life table for the total population: United States, 2011.
- 127. Pokorski RJ. Long-term survival experience of patients with multiple sclerosis. *Journal of insurance medicine (New York, NY)*. 1997;29(2):101-106.
- 128. Oleen-Burkey M, Castelli-Haley J, Lage MJ, Johnson KP. Burden of a Multiple Sclerosis Relapse. *The Patient Patient-Centered Outcomes Research*. 2012;5(1):57-69.
- 129. Patrick DL, Starks HE, Cain KC, Uhlmann RF, Pearlman RA. Measuring preferences for health states worse than death. *Medical decision making: an international journal of the Society for Medical Decision Making.* 1994;14(1):9-18.
- 130. Jakubowiak AJ, Campioni M, Benedict A, et al. Cost-effectiveness of adding carfilzomib to lenalidomide and dexamethasone in relapsed multiple myeloma from a US Perspective. *J Med Econ.* 2016:1-44.
- 131. Cook J, Richardson J, Street A. A cost utility analysis of treatment options for gallstone disease: Methodological issues and results. *Health Economics*. 1994;3(3):157-168.
- 132. Tolle T, Dukes E, Sadosky A. Patient burden of trigeminal neuralgia: results from a cross-sectional survey of health state impairment and treatment patterns in six European countries. *Pain practice: the official journal of World Institute of Pain.* 2006;6(3):153-160.
- 133. Campbell JD, McQueen RB, Miravalle A, Corboy JR, Vollmer TL, Nair K. Comparative effectiveness of early natalizumab treatment in JC virus-negative relapsing-remitting multiple sclerosis. *The American journal of managed care*. 2013;19:278-285.
- 134. US Brand Rx Net Price (access restricted document). 2016. Accessed November 4.
- 135. Truven Health Analytics. Redbook Online (online database). 2016.

- 136. Kobelt G, Berg J, Atherly D, Hadjimichael O. Costs and quality of life in multiple sclerosis: A cross-sectional study in the United States. *Neurology*. 2006;66:1696-1702.
- 137. Gajofatto A, Benedetti MD. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop? *World Journal of Clinical Cases: WJCC.* 2015;3(7):545-555.
- 138. Hernandez L, Guo S, Kinter E, Fay M. Cost-effectiveness analysis of peginterferon beta-1a compared with interferon beta-1a and glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis in the United States. *Journal of Medical Economics*. 2016;19(7):684-695.
- 139. Lee S, Baxter DC, Limone B, Roberts MS, Coleman CI. Cost-effectiveness of fingolimod versus interferon beta-1a for relapsing remitting multiple sclerosis in the United States. *Journal of medical economics*. 2012;15:1088-1096.
- 140. National Institute for Health and Care Excellence. *Dimethyl fumarate for treating relapsing-remitting multiple sclerosis.* 2013.
- 141. Noyes K, Bajorska A, Chappel A, et al. Cost-effectiveness of disease-modifying therapy for multiple sclerosis: a population-based study. *Neurology*. 2011;77(4):355-363.
- 142. Zhang X, Hay JW, Niu X. Cost effectiveness of fingolimod, teriflunomide, dimethyl fumarate and intramuscular interferon-β1a in relapsing-remitting multiple sclerosis. *CNS drugs*. 2015;29:71-81.
- 143. Ragonese P, Aridon P, Salemi G, D'Amelio M, Savettieri G. Mortality in multiple sclerosis: a review. *European journal of neurology*. 2008;15(2):123-127.
- 144. Scalfari A, Knappertz V, Cutter G, Goodin DS, Ashton R, Ebers GC. Mortality in patients with multiple sclerosis. *Neurology.* 2013;81(2):184-192.
- 145. Minden S, Hoaglin D, Jureidini S, et al. Disease-modifying agents in the Sonya Slifka Longitudinal Multiple Sclerosis Study. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2008;14(5):640-655.
- 146. Minden SL, Frankel D, Hadden L, Perloffp J, Srinath KP, Hoaglin DC. The Sonya Slifka Longitudinal Multiple Sclerosis Study: methods and sample characteristics. *Multiple sclerosis* (Houndmills, Basingstoke, England). 2006;12(1):24-38.
- 147. Minden SL, Frankel D, Hadden LS, Srinath KP, Perloff JN. Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. *NeuroRehabilitation*. 2004;19(1):55-67.
- 148. Calabrese M, Bernardi V, Atzori M, et al. Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing-remitting multiple sclerosis. *Multiple sclerosis (Houndmills, Basingstoke, England)*. 2012;18(4):418-424.
- 149. Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). *Lancet (London, England)*. 2002;359(9316):1453-1460.
- 150. Etemadifar M, Janghorbani M, Shaygannejad V. Comparison of Betaferon, Avonex, and Rebif in treatment of relapsing-remitting multiple sclerosis. *Acta neurologica Scandinavica*. 2006;113(5):283-287.
- 151. Cadavid D, Wolansky LJ, Skurnick J, et al. Efficacy of treatment of MS with IFNbeta-1b or glatiramer acetate by monthly brain MRI in the BECOME study. *Neurology*. 2009;72(23):1976-1983.

- 152. O'Connor P, Filippi M, Arnason B, et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. *The Lancet Neurology*. 2009;8(10):889-897.
- 153. Panitch H, Goodin DS, Francis G, et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. *Neurology*. 2002;59(10):1496-1506.
- 154. Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. *The Lancet Neurology.* 2008;7(10):903-914.
- 155. Calabresi PA, Kieseier BC, Arnold DL, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. *The Lancet Neurology*. 2014;13(7):657-665.
- 156. European Medicines Agency. Assessment Report: Tecfidera. London November 26 2013.
- 157. Brown S, Hutton B, Clifford T, et al. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL. *Systematic Reviews*. 2014;3(1):110.
- 158. Center for Medicare and Medicaid Services. 2016 National Physician Fee Schedule Relative Value File January Release. 2016.
- 159. Center for Medicare and Medicaid Services. 2016 Clinical Diagnostic Laboratory Fee Schedule 2016.
- 160. Abbvie. Data on File.

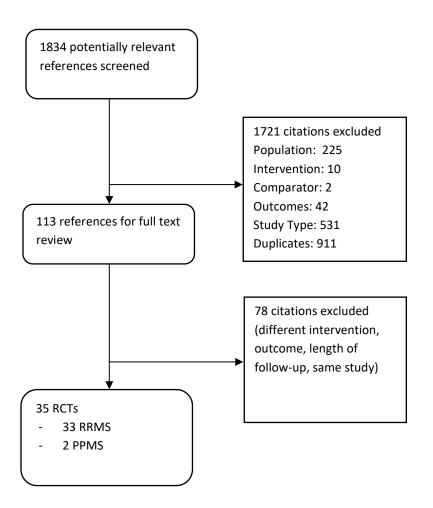
©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

APPENDICES

Appendix A. Search Strategies and Results

Table A1. PRISMA 2009 Checklist

	#	Checklist item
		TITLE
Title	1	Identify the report as a systematic review, meta-analysis, or both.
		ABSTRACT
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.
		INTRODUCTION
Rationale	3	Describe the rationale for the review in the context of what is already known.
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).
		METHODS
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.


	_	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency
		(e.g., I ²) for each meta-analysis.
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective
		reporting within studies).
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating
		which were pre-specified.
		RESULTS
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at
		each stage, ideally with a flow diagram.
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and
		provide the citations.
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each
		intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).
		DISCUSSION
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to
		key groups (e.g., healthcare providers, users, and policy makers).
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of
		identified research, reporting bias).
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.
		FUNDING
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the
J		systematic review.
5 AA L D L'IL L' A T		Altman DC. The PRISMA Croup (2000). Preferred Penerting Items for Systematic Pavious and Meta Applysos. The

From: Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

Table A2. Search Strategies for DMTs for RRMS

Search	Query	Items
		found
#20	"Search (#18 and #19) "	772
#19	"Search ((((clinical study) OR clinical trial) OR ""controlled clinical trial""[Publication	1052710
	Type]) OR ""randomized controlled trial""[Publication Type]) OR ""pragmatic clinical	
	trial""[Publication Type] "	
#18	"Search (#17) NOT #16"	2176
#17	"Search (#14 AND #15) "	2840
#16	"Search (guideline[Publication Type] OR practice guideline[Publication Type] OR	3677718
	letter[Publication Type] OR editorial[Publication Type] OR review[Publication Type] OR	
	news[Publication Type] OR case report[Publication Type]) "	
#15	"Search English[Language] "	21876235
#14	"Search (#1 AND #13) "	3066
#13	"Search (#2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12)"	85479
#12	"Search ocrelizumab OR ocrevus "	113
#11	"Search zinbryta OR daclizumab "	995
#10	"Search rituxan OR rituximab "	16398
#9	"Search lemtrada OR alemtuzumab "	2368
#8	"Search tysabri OR natalizumab "	1835
#7	"Search tecfidera OR dimethyl fumarate "	734
#6	"Search aubagio OR teriflunomide "	267
#5	"Search gilenya OR fingolimod "	1931
#4	"Search (plegridy OR peginterferon) "	5916
#3	"Search (glatiramer OR copaxone OR copolymer) "	29103
#2	"Search (interferon beta OR avonex OR betaseron OR extavia OR rebif) "	29165
#1	"Search (relapsing remitting OR remitting relapsing OR relapsing-remitting OR remitting-	9232
	relapsing OR RR-MS) "	

Figure A1. PRISMA flow Chart Showing Results of Literature Search for Multiple Sclerosis DMTs

Appendix B. Ongoing Studies

Table B1. Ongoing Studies of Injectable DMTs for MS

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Glatiramer acetate					
A Study in Subjects	RCT	Glatiramer	N = 1404, ages 18-55, both sexes	Total number of	Dec. 2016
With Relapsing-		acetate 40mg	Must have documented RRMs at screening	confirmed relapses	
Remitting Multiple			Ambulatory with EDSS score 0-5.5	during placebo-	
Sclerosis (RRMS) to		Placebo	Relapse-free, stable condition, and free of corticosteroid and acthar treatment	controlled phase	
Assess the Efficacy,			for 30 days prior to tx, between screening and baseline		
Safety and			Must have one relapse in previous year, two relapses in previous two years, or		
Tolerability of			one relapse with T1-Gd enhancing lesion in previous 12-24 months		
Glatiramer Acetate			Women of child-bearing potential must use contraceptives		
(GA) Injection 40			No progressive MS		
mg Administered			No use of experimental/investigational drugs within 6 months		
Three Times a Week			No use of immunosuppressive or cytotoxic agents within 6 months		
Compared to			No use of natalizumab or other monoclonal antibodies within 2 years		
Placebo (GALA)			No use of cladibrine within 2 years		
			No previous tx with immunomodulators within 2 months		
NCT01067521			No previous use of glatiramer acetate or other glatiramoid		
			No chronic corticosteroid use within 6 months		
			No previous total body or total lymphoid irradiation		
			No previous stem-cell tx, autologous or allogenic bone marrow transplant		
			No pregnant/lactating women		
			No clinically significant or unstable medical/surgical condition		
			No history of gadolinium sensitivity		
			No inability to undergo MRI		
			No drug hypersensitivity to Mannitol		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Copaxone Study to	Non-	Glatiramer	N = 102, ages 18+, both sexes	EDSS every 6	Sept. 2019
Follow Patients	RCT	acetate	Must have participated in original trial	months	
From the First			Women of childbearing potential must use contraceptives		
Original Study for			No pregnant/lactating women	AEs every 3 months	
Safety and			No inability to self-administer medication, or absence of other individual who		
Effectiveness			can administer medication		
			No use of interferons, experimental MS tx, previous immunosuppressive tx with		
NCT00203021			cytotoxic chemotherapy, or totally lymphoid irradiation within 30 days of study		
			entry		

Source: www.ClinicalTrials.gov (NOTE: studies listed on site include both clinical trials and observational studies)

Table B2. Ongoing Trials of Oral DMTs for MS

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Dimethyl fumarate					
BG00012 Monotherapy	RCT	Dimethyl	N = 1738, ages 19-58, both sexes	Number of	Feb. 2023
Safety and Efficacy		fumarate 240	Subjects must have participated in NCT00420212 or NCT00451451 to	participants with	
Extension Study in		mg BID,	completion	AEs	
Multiple Sclerosis (MS)		placebo daily	No significant change in medical history that would have precluded		
(ENDORSE)			participation in above trials	Secondary	
		Dimethyl	No participants who discontinued participation in above trials due to AE or	outcomes:	
NCT00835770		fumarate 240	reasons other than relapse or disability progression		
		mg TID (this	No participants in above trials who discontinued participation due to	ARR through 12	
		arm was closed	disability progression or relapse who did not follow modified visit schedule until week 96	years	
			until week 96	FDCC change	
		partway through study		EDSS change through 12 years	
		due to		tillough 12 years	
		approval of		Change in SF-36,	
		240 mg BID		EQ-5D, visual	
		dosage		function through	
		aosage		12 years	
				12 years	

Title/ Trial Sponsor	Study	Comparators	Patient Population	Primary	Est. Completion
	Design			Outcomes	Date
Fingolimod					
MS Study Evaluating	RCT	Fingolimod 0.5	N = 1960, ages 18-65, both sexes	ARR reduction	Mar. 2022
Safety and Efficacy of		mg daily	Diagnosis of RRMS	through 12	
Two Doses of Fingolimod			EDSS score 0-6.0	months	
Versus Copaxone		Fingolimod	Neurologically stable with no relapse/steroid use within 30 days		
		0.25 mg daily	1 relapse within previous year or 2 relapses within previous 2 years		
NCT01633112			Patients treated with IFN-β or glatiramer can continue tx until randomization		
		Glatiramer	No history of malignancy other than basal cell carcinoma		
		acetate 20 mg	No active chronic disease of the immune system other than MS		
		daily	No previous tx with high-dose immunoglobulin,		
			immunosuppressive/chemotherapeutic medication, monoclonal antibodies,		
			rituximab, alemtuzumab, ofatumumab, ocrelizumab, mitoxantrone,		
			cladibrine, corticosteroids, adrenocorticotropic hormones at varying		
			timeframes before randomization		
			No uncontrolled diabetes mellitus		
			No macular edema		
			No hepatitis A, B, C, or E (acute or chronic)		
			No patients who are negative for varicella zoster IgG antibodies		
			No live or attenuated vaccination within 1 month		
			No total lymphoid irradiation, bone marrow transplantation		
			No unstable medical/psychiatric condition		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Efficacy of Fingolimod in	Open-	Fingolimod	N = 434, ages 18-50, both sexes	ARR difference	July 2016
de Novo Patients Versus	label		Diagnosis of MS with at least 9 T2 lesions, disease duration ≥ 1 year, ≤ 5	between groups	
Fingolimod in Patients	RCT		years	at 12 months	
Previously Treated With			Patients who have had at least 2 relapses in previous 2 years and who have		
a First Line Disease			EDSS score 0-3.5	Secondary	
Modifying Therapy			Patients who are DMT-naïve, patients who have been treated with a "first-	outcomes:	
(EARLIMS)			line" DMT		
			No prior tx with fingolimod, immunosuppressant drugs, monoclonal	Time to first	
NCT01498887			antibodies at any time	relapse	
			No tx with immunoglobulins in previous 6 months		
				Disability	
				progression by	
				EDSS at 12	
				months	

Source: www.ClinicalTrials.gov (NOTE: studies listed on site include both clinical trials and observational studies)

Table B2. Ongoing Trials of Infused DMTs for MS

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Alemtuzumab					
Phase IIIB-IV Long-Term	Non-	alemtuzumab	N = 812, ages 18+, both sexes	AEs, SAEs through	Mar. 2020
Follow-up Study for	RCT		Participants must complete at least 48 months of extension study	5.5 years	
Patients Who			CAMMS03409		
Participated in			No simultaneous participation in other investigational trials	Secondary	
CAMMS03409 (TOPAZ)				outcomes:	
NCT02255656				ARR, change in	
				EDSS through 5.5	
				years	
				Change in self-	
				reported QoL, EQ-	
				5D	

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary	Est. Completion Date
				Outcomes	
Ocrelizumab					
A Study of Ocrelizumab	RCT	Ocrelizumab	N = 835, ages 18-55, both sexes	ARR at 96 weeks	Jan. 2020
in Comparison With		600 mg	Diagnosis of MS		
Interferon Beta-1a			EDSS score 0-5.5	Secondary	
(Rebif) in Participants		IFN B-1a	2+ documented attacks within previous 2 years, or one clinical attack in	outcomes:	
With Relapsing Multiple		(Rebif) 44 mcg	previous year but not within 30 days of screening		
Sclerosis			Neurological stability in at least the month before screening/baseline	12- and 24- week	
			No PPMS	confirmed	
NCT01412333			No disease duration of 10+ years with EDSS score ≤ 2.0	disability	
			No contraindication for MRI	progression by	
			No neurological disorders that may be similar to MS	EDSS score	
			No pregnant/lactating women		
			No requirement for chronic tx with systemic corticosteroids or	SF-36 at week 96	
			immunosuppresives		
			No primary or secondary immunodeficiency	NEDA at week 96	
			No history of allergic/anaphylactic reactions to monoclonal antibodies		
			No chronic infection		
			No history of PML		
			No contraindication/intolerance to oral/IV corticosteroids		
			No contraindication to Rebif		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
A Study of Ocrelizumab	RCT	Ocrelizumab	N = 821, ages 18-55, both sexes	ARR at 96 weeks	Nov. 2019
in Comparison With		600 mg	Diagnosis of MS		
Interferon Beta-1a			EDSS score 0-5.5	Secondary	
(Rebif) in Participants		IFN B-1a	2+ documented attacks within previous 2 years, or one clinical attack in	outcomes:	
With Relapsing Multiple		(Rebif) 44 mcg	previous year but not within 30 days of screening		
Sclerosis			Neurological stability in at least the month before screening/baseline	12- and 24- week	
			No PPMS	confirmed	
NCT01247324			No disease duration of 10+ years with EDSS score ≤ 2.0	disability	
			No contraindication for MRI	progression by	
			No neurological disorders that may be similar to MS	EDSS score	
			No pregnant/lactating women		
			No requirement for chronic tx with systemic corticosteroids or	SF-36 at week 96	
			immunosuppressives No primary or secondary immunodeficiency	NEDA at week 96	
			No history of allergic/anaphylactic reactions to monoclonal antibodies		
			No chronic infection		
			No history of PML		
			No contraindication/intolerance to oral/IV corticosteroids		
			No contraindication to Rebif		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
A Study of Ocrelizumab	RCT	Ocrelizumab	N = 736, ages 18-55, both sexes	12-week	April 2021
in Patients With Primary		600 mg	Diagnosis of PPMS	confirmed	
Progressive Multiple			EDSS score 3-6.5	disability	
Sclerosis		Placebo	Disease duration of < 15 years if EDSS > 5, < 10 years if EDSS ≥ 5	progression by	
			Must use contraceptives during trial and 48 weeks after last dose	EDSS score	
NCT01194570			No RRMS, SPMS, or PRMS		
			No contraindication to MRI	Secondary	
			No presence of other neurological disorders	outcomes:	
			No active infection or chronic/recurrent infection		
			Know history of cancer	24-week	
			No previous use of B-cell targeted therapies	confirmed	
			No previous treatment with lymphocyte trafficking blockers	disability	
			No concomitant disease that may require chronic use of systemic	progression by	
			corticosteroids or immunosuppressants	EDSS score	

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
A Study of Ocrelizumab	Open-	Ocrelizumab	N = 600, ages 18-55, both sexes	Percentage or	December 2019
in Participants with	label	600 mg	Diagnosis of RRMS under 2010 McDonald criteria	participants free	
Relapsing Remitting			Disease duration of 10 years or less	of relapse, T1	
Multiple Sclerosis			Prior treatment with up to 2 DMTs for longer than 6 months, discontinuation	lesions, new or	
(RRMS) Who Have Had A			of most recent DMT due to lack of suboptimal treatment response (ie, 1+	enlarging T2	
Suboptimal Response to			relapses, 1+ T1 lesions, 2+ T2 lesions)	Lesion, Confirmed	
an Adequate Course of			No PPMS	disability	
Disease-Modifying			No contraindication to MRI	progression	
Treatment (DMT)			No known presence of conditions that may mimic MS		
			No pregnant/lactating women		
NCT02637856			No chronic treatment with systemic corticosteroids or immunosuppressants		
			during study		
			No history of or active primary or secondary immunodeficiency		
			No lack of peripheral venous access		
			No history of allergic/anaphylactic reactions to monoclonal antibodies		
			No active or past infection with hepatitis B, C, HIV, syphilis, or tuberculosis		
			No history of PML		
			No contraindication or intolerance to oral or IV corticosteroids		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
A Study of Ocrelizumab	Open	Ocrelizumab	N = 600, ages 18-55, both sexes	Percent of	December 2020
in Participants With	label	600 mg	Diagnosis of RRMS under 2010 McDonald criteria	patients with No	
Relapsing Remitting			Disease duration of less than 10 years	Evidence of	
Multiple Sclerosis			Prior treatment with up to 2 DMTs for longer than 6 months, discontinuation	Disease Activity	
(RRMS) Who Have Had a			of most recent DMT due to lack of suboptimal treatment response	(NEDA)	
Suboptimal Response to			EDSS from 0.0 – 4.0 at screening		
an Adequate Course of			No SPMS, PPMS, or PRMS	Secondary	
Disease-Modifying			No contraindication to MRI	Outcomes	
Treatment (DMT)			No other neurological disorders		
			No concomitant disease that requires treatment with systemic	Percent of	
NCT02861014			corticosteroids or immunosuppressants	participants free	
			No history of or active primary or secondary immunodeficiency	of confirmed	
			No history of allergic/anaphylactic reactions to monoclonal antibodies	disability	
			No history of opportunistic infections	progression	
			No recurrent or chronic infection		
			No history of malignancy	Annual relapse	
			No congestive heart failure	rate	
			No active bacterial, viral, fungal, mycobacterial infection or other infection		

Title/ Trial Sponsor	Study Design	Comparators	Patient Population	Primary Outcomes	Est. Completion Date
Rituximab					
Rituximab Versus	RCT	Rituximab	N = 200, ages 18-40, both sexes	Relative risk of	Aug. 2021
Fumarate in Newly		every 6	Diagnosis of RRMS or one demyelinating episode with ≥ 2 asymptomatic	relapse during	
Diagnosed Multiple		months	high-intensity lesions compatible with MS diagnosis	study period	
Sclerosis. (RIFUND-MS)			No previous MS tx other than with interferon or glatiramer acetate		
		Dimethyl	<5 years disease duration		
NCT02746744		fumarate	≥ 1 relapse, ≥ 2 T2 lesions, or ≥ Gd+ lesions in previous year		
			EDSS score 0-5.5		
		Placebo	Women of childbearing potential must use contraceptives		
			No pregnant/lactating women		
			No progressive MS		
			No contraindication to MRI		
			No simultaneous tx with other immunosuppressive drugs		
			No active or severe infections		
			No severe cardiac disorder		
			No vaccination within 4 weeks		
			No allergy or intolerance to study drugs		
			No severe psychiatric condition		

Source: www.ClinicalTrials.gov (NOTE: studies listed on site include both clinical trials and observational studies)

Appendix C. Comparative Clinical Effectiveness Supplemental Information

We performed screening at both the abstract and full-text level. A single investigator screened all abstracts identified through electronic searches according to the inclusion and exclusion criteria described earlier. We did not exclude any study at abstract-level screening due to insufficient information. For example, an abstract that did not report an outcome of interest would be accepted for further review in full text. We retrieved the citations that were accepted during abstract-level screening for full text appraisal. One investigator reviewed full papers and provided justification for exclusion of each excluded study.

We also included FDA documents related to MS. These included the manufacturer's submission to the agency, internal FDA review documents, and the transcript of Advisory Committee deliberations and discussions. All literature that did not undergo a formal peer review process is described separately.

We used criteria published by the US Preventive Services Task Force (USPSTF) to assess the quality of RCTs and comparative cohort studies, using the categories "good," "fair," or "poor" (see Appendix Table F2)⁷⁷ Guidance for quality ratings using these criteria is presented below, as is a description of any modifications we made to these ratings specific to the purposes of this review.

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study; reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention is paid to confounders in analysis. In addition, intention to treat analysis is used for RCTs.

Fair: Studies were graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs.

Poor: Studies were graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.

Table C1. Summary of Randomized Trials of DMTs for RRMS

Reference	Study	Group*	N	F/U (weeks)	(weeks) MS Definition	
Interferon β-1a 30 mcg (A	vonex)	<u>'</u>	•		·	
Jacobs 1996 ⁷⁹	-	IFN β-1a 30 mcg IM Q week	158	104	Poser	No
		Placebo IM Q week	143			
Calabrese 2012 ¹⁴⁸	-	IFN β-1a 30 mcg IM Q week	55	104	McDonald	Mixed
		IFN β-1a 44 mcg SC TIW	55			
	Glatiram		55			
Lublin 2013 ⁴⁴	CombiRx	IFN β-1a 30 mcg IM Q week	250	156	McDonald	No
		Glatiramer 20 mg SC QD	259			
Vollmer 2014 ¹⁰⁰	BRAVO	IFNβ-1a 30 mcg IM Q week	447	104	McDonald	Mixed
		Placebo IM Q week	450			
Interferon β-1b 250 mcg (Betaseron)					
IFNβ Multiple Sclerosis	-	IFN β-1b 250 SC mcg QOD	124	104	Poser	No
Study Group 1993 ⁹¹		Placebo	123			
Durelli 2002 ¹⁴⁹	INCOMIN	IFN β-1b 250 SC mcg QOD	96	104	Poser	No
		IFN β-1a 30 mcg IM Q week	92			
Etemadifar 2006 ¹⁵⁰	-	IFN β-1b 250 SC mcg QOD	30	104	Poser	No
		IFN β-1a 30 mcg IM Q week	30			
		IFN β-1a 44 mcg SC TIW	30			
Cadavid 2009 ¹⁵¹	BECOME	IFN β-1b 250 SC mcg QOD	36	104	McDonald	No
		Glatiramer 20 mg SC QD	39			
O'Connor 2009 ¹⁵²	BEYOND	IFN β-1b 250 SC mcg QOD	897	104+	McDonald	No
		Glatiramer 20 mg SC QD	448			
Glatiramer Acetate (Copa	xone)					
Bornstein 1987 ¹³	-	Glatiramer 20 mg SC QD	25	104	Poser	No
	Placebo SC QD		23			
Johnson 1995 ⁹²	hnson 1995 ⁹² - Glatiramer 20 mg SC QD		125	104	Poser	Mixed
		Placebo SC QD	126			
Khan 2013 ¹⁶	GALA	Glatiramer 40 mg SC TIW	943	52	McDonald	Mixed
		Placebo SC QD	461			

Reference	Study	Group*	N	F/U (weeks)	MS Definition	Prior Treatment
Interferon β-1a 22/44 m	ncg (Rebif)	<u> </u>	·		•	
PRISMS 1998 ⁹³	PRISMS	IFN β-1a 22 mcg SC TIW	189	104	Poser	Mixed
		IFN β-1a 44 mcg SC TIW	184			
		Placebo SC TIW	187			
Panitch 2002 ¹⁵³	EVIDENCE	IFN β-1a 44 mcg SC TIW	339	48 (primary endpoint	Poser	Mixed
		IFN β-1a 30 mcg IM Q week	338	assessed at 24 weeks)		
Mikol 2008 ¹⁵⁴	REGARD	IFN β-1a 44 mcg SC TIW	386	96	McDonald	No
		Glatiramer 20 mg SC QD	378			
Peginterferon β-1a (Ple	gridy)		'			
Calabresi 2014 ¹⁵⁵	ADVANCE	PEG β-1a 125 mcg SC Q 14 d	512	48	McDonald	Mixed
		Placebo SC Q 14 d	500			
Fingolimod (Gilenya)			'			
Cohen 2010 ⁸⁴	TRANSFORMS	Fingolimod 0.5 mg PO QD	429	52	McDonald	Mixed
		IFN β-1a 30 mcg IM Q week	431			
Kappos 2010 ⁸⁰	FREEDOMS	Fingolimod 0.5 mg PO QD	425	104	McDonald	Mixed
		Placebo PO QD	418			
Calabresi 2014 ⁹⁵	FREEDOMS II	Fingolimod 0.5 mg PO QD	358	104	McDonald	Mixed
		Placebo PO QD	355			
Teriflunomide (Aubagio))					
O'Connor 2011 ⁹⁹	TEMSO	Teriflunomide 7 mg PO QD	365	108	McDonald	Mixed
		Teriflunomide 14 mg PO QD	358			
		Placebo PO QD	363			
Confavreux 2014 ⁹⁶	TOWER	Teriflunomide 7 mg PO QD	407	48+	McDonald	Mixed
		Teriflunomide 14 mg PO QD	370			
		Placebo PO QD	388			

Reference	Study	Group*	N	F/U (weeks)	MS Definition	Prior Treatment
Vermersch 2014 ⁸⁵	TENERE	Teriflunomide 7 mg PO QD	109	48+	McDonald	Mixed
		Teriflunomide 14 mg PO QD	111			
		IFN β-1a 44 mcg SC TIW	104			
Dimethyl fumarate (Tec	fidera)	'	1			
Fox 2012 ⁸⁶	CONFIRM	Dimethyl fumarate 240 mg PO BID	359	96	McDonald	Mixed
		Glatiramer 20 mg SC QD	350			
		Placebo	363			
Gold 2012 ⁹⁸	DEFINE	Dimethyl fumarate 240 mg PO BID	410	96	McDonald	Mixed
		Placebo PO BID	408			
Natalizumab (Tysabri)		'	'			
Polman 2006 ³¹	AFFIRM	Natalizumab 300 mg IV Q 4 weeks	627	104	McDonald	Mixed
		Placebo IV Q 4 weeks	315			
Alemtuzumab (Lemtrad	· · · · · · · · · · · · · · · · · · ·		'			
Coles 2008 ⁸⁸	CAMMS223	Alemtuzumab 12 mg IV Q year	112	156	McDonald	No
		IFN β-1a 44 mcg SC TIW	111			
Cohen 2012 ⁸⁷	CARE-MS I	Alemtuzumab 12 mg IV Q year	376	104	McDonald	No
		IFN β-1a 44 mcg SC TIW	187			
Coles 2012 ⁸⁹	CARE-MS II	Alemtuzumab 12 mg IV Q year	426	104	McDonald	Yes
		IFN β-1a 44 mcg SC TIW	202			
Daclizumab (Zinbryta)	<u>'</u>			'		
Gold 2013 ⁸¹	SELECT	Daclizumab 150 mg SC Q 4 weeks	201	52	McDonald	Mixed
		Placebo SC Q 4 weeks	196			
Kappos 2015 ⁸²	DECIDE	Daclizumab 150 mg SC Q 4 weeks	919	144	McDonald	Mixed
		IFN β-1a 30 mcg IM Q week	922			
Ocrelizumab (Ocrevus)		'	'			
Hauser 2017 ¹⁴	OPERA I	Ocrelizumab 600 mg IV Q 24 weeks	410	96	McDonald	Mixed
		IFN β-1a 44 mcg SC TIW	411			
Hauser 2017 ¹⁴	OPERA II	Ocrelizumab 600 mg IV Q 24 weeks	417	96	McDonald	Mixed
		IFN β-1a 44 mcg SC TIW	418			
Rituximab (Rituxan)	<u> </u>	'	1			

Reference	Study	Group*	N	F/U (weeks)	MS Definition	Prior Treatment
Hauser 2008 ⁸³	HERMES	Rituximab 1000 mg IV on days 1&15 Placebo IV	69 35	48	McDonald	Mixed

Table C2. Baseline Characteristics of Patients in RCTs of DMTs for RRMS

Reference	Group	Age	% Female	% White	MS Duration	EDSS baseline	Relapses prior year	MRI GdE lesions
Interferon β-1a 30 mcg (Avone	x)			•				•
Jacobs 1996 ⁷⁹	IFN β-1a 30 mcg IM Q week	37	73	92	6.5	2.4	1.2	NR
	Placebo IM Q week							
Calabrese 2012 ¹⁴⁸	IFN β-1a 30 mcg IM Q week	37	70	NR	5.6	2.0	1.2	NR
	IFN β-1a 44 mcg SC TIW							
	Glatiramer 20 mg SC QD							
Lublin 2013 ⁴⁴	IFN β-1a 30 mcg IM Q week	38	72	88	1.2	2.0	1.7	4.3
CombiRx	Glatiramer 20 mg SC QD							
Vollmer 2014 ¹⁰⁰	IFN β-1a 30 mcg IM Q week	38	70	NR	5.0	2.5	1.0	65% with 0
BRAVO	Placebo IM Q week							
Interferon β-1b 250 mcg (Betas	seron)							
IFNβ Multiple Sclerosis	IFN β-1b 250 SC mcg QOD	35	70	94	NR	2.4	2 years: 2.6	4.3
Study Group 1993 ⁹¹	Placebo							
Durelli 2002 ¹⁴⁹	IFN β-1b 250 SC mcg QOD	37	65	NR	6.3	2.0	1.5	NR
INCOMIN	IFN β-1a 30 mcg IM Q week							
Etemadifar 2006 ¹⁵⁰	IFN β-1b 250 SC mcg QOD	29	76	NR	3.2	2.0	2.2	NR
	IFN β-1a 30 mcg IM Q week							
	IFN β-1a 44 mcg SC TIW							
Cadavid 2009 ¹⁵¹	IFN β-1b 250 SC mcg QOD	36	69	52	1.1	2	1.9	NR
BECOME	Glatiramer 20 mg SC QD							
O'Connor 2009 ¹⁵²	IFN β-1b 250 SC mcg QOD	36	69	91	5.3	2.3	1.3	2.1
BEYOND	Glatiramer 20 mg SC QD							

Reference	Group	Age	% Female	% White	MS Duration	EDSS baseline	Relapses prior year	MRI GdE lesions
Glatiramer Acetate (Copax	one)		<u> </u>	•				•
Bornstein 1987 ¹³	Glatiramer 20 mg SC QD	31	56	96	5.6	3.0	2 years: 3.8	NR
	Placebo SC QD							
Johnson 1995 ⁹²	Glatiramer 20 mg SC QD	34	73	94	6.9	2.6	2 years:	NR
Johnson 1995	Placebo SC QD	34	/3	34	0.5	2.0	2.9	INIX
Khan 2013 ¹⁶	Glatiramer 40 mg SC TIW	37	68	98	7.7	2.8	1.3	1.6
GALA	Placebo SC QD							
Interferon β-1a 22/44 mcg	(Rebif)		'					
PRISMS 1998 ⁹³	IFNβ-1a 22 mg SC TIW	35	69	NR	5.3	2.5	2 years: 3.0	NR
PRISMS	IFNβ-1a 44 mcg SC TIW							
	Placebo SC TIW							
Panitch 2002 ¹⁵³	IFNβ-1a 44 mcg SC TIW	38	75	91	6.6	2.3	2 years: 2.6	NR
EVIDENCE	IFNβ-1a 30 mcg IM Q week							
Mikol 2008 ¹⁵⁴	IFNβ-1a 44 mcg SC TIW	37	71	94	6.2	2.3	NR	1.6
REGARD	Glatiramer 20 mg SC QD							
Peginterferon β-1a (Plegrid	ly)							
Calabresi 2014 ¹⁵⁵	PegIFN β-1a 125 mcg SC Q 14 d	37	71	NR	6.6	NR, 84% <4	1.6	1.4
ADVANCE	Placebo SC Q 14 d							
Fingolimod (Gilenya)								
Cohen 2010 ⁸⁴	Fingolimod 0.5 mg PO QD	38	72	88	1.2	2.0	1.7	4.3
TRANSFORMS	IFNβ-1a 30 mcg IM Q week							
Kappos 2010 ⁸⁰	Fingolimod 0.5 mg PO QD	37	70	94	NR	2.9	2 years: 3.4	NR
FREEDOMS	Placebo PO QD							
Calabresi 2014 ⁹⁵	Fingolimod 0.5 mg PO QD	40	79	NR	10.5	2.4	1.4	1.3
FREEDOMS II	Placebo PO QD							
Teriflunomide (Aubagio)								
O'Connor 2011 ⁹⁹	Teriflunomide 7 mg PO QD	38	72	97	8.7	2.7	1.4	1.7
TEMSO	Teriflunomide 14 mg PO QD							
	Placebo PO QD							

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

Reference	Group	Age	% Female	% White	MS Duration	EDSS baseline	Relapses prior year	MRI GdE lesions
Confavreux 2014 ⁹⁶	Teriflunomide 7 mg PO QD	38	71	82	8.0	2.7	1.4	NR
TOWER	Teriflunomide 14 mg PO QD							
	Placebo PO QD							
Vermersch 2014 ⁸⁵	Teriflunomide 7 mg PO QD	37	68	100	7.1	2.1	1.3	NR
TENERE	Teriflunomide 14 mg PO QD							
	IFNβ-1a 44 mcg SC TIW							
Dimethyl fumarate (Tecfide	ra)	·	'				'	
Fox 2012 ⁸⁶	Dimethyl fumarate 240 mg PO BID	37	70	84	4.7	2.6	1.4	NR
CONFIRM	Glatiramer 20 mg SC QD							
	Placebo							
Gold 2012 ⁹⁸	Dimethyl fumarate 240 mg PO BID	38	74	78	5.7	2.4	1.3	1.3
DEFINE	Placebo PO BID							
Natalizumab (Tysabri)				'				
Polman 2006 ³¹	Natalizumab 300 mg IV Q 4 weeks	36	70	95	5	2.3	1.5	2.2
AFFIRM	Placebo IV Q 4 weeks							
Alemtuzumab (Lemtrada)				'				
Coles 2008 ⁸⁸	Alemtuzumab 12 mg IV Q year	32	64	90	NR	2.0	2 year: 2.7	NR
CAMMS223	IFNβ-1a 44 mcg SC TIW							
Cohen 2012 ⁸⁷	Alemtuzumab 12 mg IV Q year	33	65	95	2.1	2.0	1.8	2.3
CARE-MS I	IFNβ-1a 44 mcg SC TIW							
Coles 2012 ⁸⁹	Alemtuzumab 12 mg IV Q year	35	67	89	4.5	2.7	1.6	2.4
CARE-MS II	IFNβ-1a 44 mcg SC TIW							
Daclizumab (Zinbryta)		·	·					
Gold 2013 ⁸¹	Daclizumab 150 mg SC Q 4 weeks	36	65	97	2.5	2.7	1.3	2.0
SELECT	Placebo SC Q 4 weeks							
Kappos 2015 ⁸²	Daclizumab 150 mg SC Q 4 weeks	36	68	90	6.9	2.5	1.6	2.2
DECIDE	IFNβ-1a 30 mcg IM Q week							
Ocrelizumab (Ocrevus)			'					
Hauser 2017 ¹⁴	Ocrelizumab 600 mg IV Q 24 weeks	37	66	91	6.5	2.8	1.3	1.8
OPERA I	IFNβ-1a 44 mcg SC TIW							

Reference	Group	Age	% Female	% White	MS Duration	EDSS baseline	Relapses prior year	MRI GdE lesions
Hauser 2017 ¹⁴	Ocrelizumab 600 mg IV Q 24 weeks	37	66	90	6.7	2.8	1.3	1.9
OPERA II	IFNβ-1a 44 mcg SC TIW							
Rituximab (Rituxan)								
Hauser 2008 ⁸³	Rituximab 1000 mg IV on days 1 and	41	78	NR	9.6	2.5	1.0	1.5
HERMES	15							
	Placebo IV							

Table C3. Quality Assessment of Included RCTs of DMTs for RRMS

Reference	Comparable Groups	Maintain Comparability	Double- Blind	Measurements Equal and Valid	Clearly-defined Intervention	Key Outcomes Assessed	Analysis Appropriate	Quality
Interferon β-1a 30 mcg (Avon	iex)	<u>'</u>	'		1	<u> </u>	1	'
Jacobs 1996 ⁷⁹	Yes	Yes – 8%	Yes	Yes	Yes	Yes	Yes	Good
Calabrese 2012 ¹⁴⁸	Yes	Yes – 15%	No	Yes	Yes	No	No	Poor
Lublin 2013 ⁴⁴	Yes	Yes – 19%	No	No	Yes	Yes	Yes	Fair
CombiRx								
Vollmer 2014 ¹⁰⁰	Yes	Yes – 18%	No	No	Yes	Yes	Yes	Fair
BRAVO								
Interferon β-1b 250 mcg (Bet	aseron)							
IFNβ Multiple Sclerosis	Unclear	No – 33%	Yes	Yes	Yes	Yes	Yes	Poor
Study Group 1993 ⁹¹								
Durelli 2002 ¹⁴⁹	Yes	Yes – 16%	No	No	Yes	Yes	Yes	Fair
INCOMIN								
Etemadifar 2006 ¹⁵⁰	No	Yes – 0%	No	No	Yes	No	Yes	Poor
Cadavid 2009 ¹⁵¹	Unclear	Yes – 15%	No	No	Yes	No	Yes	Fair
BECOME								
O'Connor 2009 ¹⁵²	Yes	Yes – 15%	No	No	Yes	No	Unclear	Fair
BEYOND								
Glatiramer Acetate (Copaxon	e)							
Bornstein 1987 ¹³	Yes	Yes – 14%	No	No	Yes	No	Yes	Fair
Johnson 1995 ⁹²	Unclear	Yes – 14%	Yes	Yes	Yes	No	Yes	Fair

Reference	Comparable	Maintain	Double-	Measurements	Clearly-defined	Key Outcomes	Analysis	Quality
Reference	Groups	Comparability	Blind	Equal and Valid	Intervention	Assessed	Appropriate	Quality
Khan 2013 ¹⁶	Yes	Yes – 8%	Yes	Yes	Yes	No	Yes	Fair
GALA								
Interferon β-1a 22/44 mcg (F	lebif)							
PRISMS 1998 ⁹³	Yes	Yes- 10%	Yes	Yes	Yes	No	Yes	Fair
PRISMS								
Panitch 2002 ¹⁵³	Yes	Yes – 4%	No	No	Yes	Yes	Yes	Fair
EVIDENCE								
Mikol 2008 ¹⁵⁴	Yes	Yes – 18%	No	No	Yes	Yes	Yes	Fair
REGARD								
Peginterferon β-1a (Plegridy)								
Calabresi 2014 ¹⁵⁵	Yes	Yes – 12%	Yes	Yes	Yes	No	Yes	Fair
ADVANCE								
Fingolimod (Gilenya)								
Cohen 2010 ⁸⁴	Yes	Yes – 11%	Yes	Yes	Yes	No	Yes	Fair
TRANSFORMS								
Kappos 2010 ⁸⁰	Yes	Yes – 19%	Yes	Yes	Yes	Yes	Yes	Good
FREEDOMS								
Calabresi 2014 ⁹⁵	Yes	No - 26%	Yes	Yes	Yes	Yes	Yes	Poor
FREEDOMS II								
Teriflunomide (Aubagio)								
O'Connor 2011 ⁹⁹	Yes	No – 27%	Yes	Yes	Yes	No	Yes	Poor
TEMSO								
Confavreux 201496	Yes	No – 33%	Yes	Yes	Yes	No	Yes	Poor
TOWER								
Vermersch 2014 ⁸⁵	Unclear	No – 23%	No	No	Yes	No	Yes	Poor
TENERE								
Dimethyl fumarate (Tecfider	a)							
Fox 2012 ⁸⁶	Yes	No – 21%	No	No	Yes	No	Yes	Poor
CONFIRM								
Gold 2012 ⁹⁸	Yes	No – 23%	Yes	Yes	Yes	No	Yes	Poor

Reference	Comparable Groups	Maintain Comparability	Double- Blind	Measurements Equal and Valid	Clearly-defined Intervention	Key Outcomes Assessed	Analysis Appropriate	Quality
DEFINE								
Natalizumab (Tysabri)								
Polman 2006 ³¹	Yes	Yes – 9%	Yes	Yes	Yes	Yes	Yes	Good
AFFIRM								
Alemtuzumab (Lemtrada)								
Coles 2008 ⁸⁸	Unclear	No – 25%	Yes	Yes	Yes	Yes	Yes	Poor
CAMMS223								
Cohen 2012 ⁸⁷	Yes	Yes – 9%	No	No	Yes	Yes	Yes	Fair
CARE-MS I								
Coles 2012 ⁸⁹	Yes	Yes – 15%	No	No	Yes	Yes	Yes	Fair
CARE-MS II								
Daclizumab (Zinbryta)								
Gold 2013 ⁸¹	Yes	Yes – 9%	Yes	Yes	Yes	No	Yes	Fair
SELECT								
Kappos 2015 ⁸²	Yes	No – 23%	Yes	Yes	Yes	No	Yes	Poor
DECIDE								
Ocrelizumab (Ocrevus)								
Hauser 2017 ¹⁴	Yes	Yes – 14%	Yes	Yes	Yes	Yes	Yes	Good
OPERA I								
Hauser 2017 ¹⁴	Yes	Yes – 18%	Yes	Yes	Yes	Yes	Yes	Good
OPERA II								
Rituximab (Rituxan)								
Hauser 2008 ⁸³	Unclear	Unclear	Yes	Yes	Yes	No	Yes	Fair
HERMES								

GdE: gadolinium-enhancing

Table C4. Annual Relapse Rate by Study

Reference	Study	Group*	N	Person- years	Relapses	ARR	95% CI
Interferon β-1a 30 mcg		<u>'</u>	'		<u>'</u>	'	'
Jacobs 1996 ⁷⁹	-	IFN β-1a 30 mcg IM Q week	158	293	196	0.67	NR
		Placebo IM Q week	143	274	225	0.82	NR
Calabrese 2012 ¹⁴⁸	-	IFN β-1a 30 mcg IM Q week	47	94	47	0.5	NR
		IFN β-1a 44 mcg SC TIW	46	92	37	0.4	NR
		Glatiramer 20 mg SC QD	48	96	48	0.5	NR
Lublin 2013 ⁴⁴	CombiRx	IFN β-1a 30 mcg IM Q week	250	604.4	97	0.16	NR
		Glatiramer 20 mg SC QD	259	650.7	70	0.11	NR
Vollmer 2014 ¹⁰⁰	BRAVO	IFN β-1a 30 mcg IM Q week	447	825	215	0.26	0.22-0.30
		Placebo IM Q week	450	809	275	0.34	0.28-0.40
Interferon β-1b 250 mcg	'		'				
IFNβ Multiple Sclerosis	-	IFN β-1b 250 SC mcg QOD	124	207	173	0.84	0.70-0.88
Study Group 1993 ⁹¹		Placebo	123	209.2	266	1.27	1.02-1.23
Durelli 2002 ¹⁴⁹	INCOMIN	IFN β-1b 250 SC mcg QOD	96	190	95	0.5	NR
		IFN β-1a 30 mcg IM Q week	92	180	126	0.7	NR
Etemadifar 2006 ¹⁵⁰	-	IFN β-1b 250 SC mcg QOD	30	60	21	0.35	NR
		IFN β-1a 30 mcg IM Q week	30	60	36	0.6	NR
		IFN β-1a 44 mcg SC TIW	30	60	18	0.3	NR
Cadavid 2009 ¹⁵¹	BECOME	IFN β-1b 250 SC mcg QOD	36	68.04	25	0.37	0.24-0.53
		Glatiramer 20 mcg SC QD	39	70.59	23	0.33	0.21-0.48
O'Connor 2009 ¹⁵²	BEYOND	IFN β-1b 250 SC mcg QOD	897	2260	814	0.36	0.27-0.45
		Glatiramer 20 mg SC QD	448	1099.5	374	0.34	0.22-0.46
Glatiramer Acetate	'	·					
Bornstein 1987 ¹³	-	Glatiramer 20 mg SC QD	25	47.5	16	0.34	NR
		Placebo SC QD	23	45.1	62	1.38	NR
Johnson 1995 ⁹²	-	Glatiramer 20 mg SC QD	125	273	161	0.59	0.5-0.7
		Placebo SC QD	126	250	210	0.84	0.73-0.97

Reference	Study	Group*	N	Person- years	Relapses	ARR	95% CI
Khan 2013 ¹⁶	GALA	Glatiramer 40 mg SC TIW	943	884.4	293	0.331	0.28-0.39
		Placebo SC QD	461	442.5	223	0.505	0.42-0.61
Interferon β-1a 22/44 mcg					·		
PRISMS 1998 ⁹³	PRISMS	IFN β-1a 22 mcg SC TIW	189	378.02	344	0.91	0.82-1.01
		IFN β-1a 44 mcg SC TIW	184	365.52	318	0.87	0.78-0.97
		Placebo SC TIW	187	374.22	479	1.28	1.17-1.4
Panitch 2002 ¹⁵³	EVIDENCE	IFN β-1a 44 mcg SC TIW	339	304.71	165	0.54	NR
		IFN β-1a 30 mcg IM Q week	338	304.2	195	0.64	NR
Mikol 2008 ¹⁵⁴	REGARD	IFN β-1a 44 mcg SC TIW	386	669.5	201	0.3	NR
		Glatiramer 20 mg SC QD	378	669.5	194	0.29	NR
Peginterferon β-1a	'		<u> </u>	·		'	
Calabresi 2014 ¹⁵⁵	ADVANCE	PEG β-1a 125 mcg SC Q 14 d	512	404.3	103	0.256	0.21-0.32
		Placebo SC Q 14 d	500	420.9	167	0.397	0.33-0.48
Fingolimod							
Cohen 2010 ⁸⁴	TRANSFORMS	Fingolimod 0.5 mg PO QD	429	424.6	68	0.16	0.12-0.21
		IFN β-1a 30 mcg IM Q week	431	415.7	137	0.33	0.26-0.42
Kappos 2010 ⁸⁰	FREEDOMS	Fingolimod 0.5 mg PO QD	425	810.3	146	0.18	0.15-0.22
		Placebo PO QD	418	766.3	307	0.40	0.34-0.47
Calabresi 2014 ⁹⁵	FREEDOMS II	Fingolimod 0.5 mg PO QD	358	623.8	131	0.21	0.17-0.25
		Placebo PO QD	355	615	246	0.40	0.34-0.48
Teriflunomide							
O'Connor 2011 ⁹⁹	TEMSO	Teriflunomide 7 mg PO QD	365	633.7	233	0.37	0.32-0.43
		Teriflunomide 14 mg PO QD	358	615.0	227	0.37	0.31-0.44
		Placebo PO QD	363	627.7	335	0.54	0.47-0.62
Confavreux 2014 ⁹⁶	TOWER	Teriflunomide 7 mg PO QD	407	614	235	0.39	0.33-0.46
		Teriflunomide 14 mg PO QD	370	573.6	177	0.32	0.27-0.38
		Placebo PO QD	388	608.4	296	0.50	0.43-0.58
Vermersch 2014 ⁸⁵	TENERE	Teriflunomide 7 mg PO QD	109	136.2	58	0.41	0.27-0.64
		Teriflunomide 14 mg PO QD	111	132.2	35	0.26	0.15-0.44

CONFIRM	IFN β-1a 44 mcg SC TIW Dimethyl fumarate 240 mg PO BID Glatiramer 20 mg SC QD Placebo	359 350	552.99 569.62	124	0.22	0.11-0.42
	Glatiramer 20 mg SC QD	350		124	0.22	ND
	Glatiramer 20 mg SC QD	350		124	0.22	ND
DEFINE	_		560 62		_	NR
DEFINE	Placebo		303.02	163	0.29	NR
DEFINE		363	561.43	212	0.40	NR
DEFINE						
	Dimethyl fumarate 240 mg PO BID	410	628.61	128	0.17	NR
	Placebo PO BID	408	612.35	246	0.36	NR
			·			
AFFIRM	Natalizumab 300 mg IV Q 4 weeks	627	1200	276	0.23	0.19-0.28
	Placebo IV Q 4 weeks	315	578	422	0.73	0.62-0.87
CAMMS223	Alemtuzumab 12 mg IV Q year	112	309.09	34	0.11	0.08-0.16
	IFN β-1a 44 mcg SC TIW	111	247.22	89	0.36	0.29-0.44
CARE-MS I	Alemtuzumab 12 mg IV Q year	376	661.11	119	0.18	0.13-0.23
	IFN β-1a 44 mcg SC TIW	187	312.82	122	0.39	0.29-0.53
CARE-MS II	Alemtuzumab 12 mg IV Q year	426	907.69	236	0.26	0.21-0.33
	IFN β-1a 44 mcg SC TIW	202	386.54	201	0.52	0.41-0.66
			·			
HERMES	Rituximab 1000 mg IV on days 1&15	69	59.227.2	2119	0.40.7	NR
	Placebo IV	35				NR
SELECT	Daclizumab 150 mg SC Q 4 weeks	201	217.75	46	0.21	0.16-0.29
	Placebo SC Q 4 weeks	196	212.33	98	0.46	0.37-0.57
	CAMMS223 CARE-MS I CARE-MS II HERMES	AFFIRM Natalizumab 300 mg IV Q 4 weeks Placebo IV Q 4 weeks CAMMS223 Alemtuzumab 12 mg IV Q year IFN β-1a 44 mcg SC TIW CARE-MS I Alemtuzumab 12 mg IV Q year IFN β-1a 44 mcg SC TIW CARE-MS II Alemtuzumab 12 mg IV Q year IFN β-1a 44 mcg SC TIW CARE-MS II Alemtuzumab 12 mg IV Q year IFN β-1a 44 mcg SC TIW HERMES Rituximab 1000 mg IV on days 1&15 Placebo IV SELECT Daclizumab 150 mg SC Q 4 weeks	AFFIRM Natalizumab 300 mg IV Q 4 weeks 627 Placebo IV Q 4 weeks 315 CAMMS223 Alemtuzumab 12 mg IV Q year 112 IFN β-1a 44 mcg SC TIW 111 CARE-MS I Alemtuzumab 12 mg IV Q year 376 IFN β-1a 44 mcg SC TIW 187 CARE-MS II Alemtuzumab 12 mg IV Q year 426 IFN β-1a 44 mcg SC TIW 202 HERMES Rituximab 1000 mg IV on days 1&15 69 Placebo IV 35 SELECT Daclizumab 150 mg SC Q 4 weeks 201	AFFIRM Natalizumab 300 mg IV Q 4 weeks 627 1200 578 Placebo IV Q 4 weeks 315 578 CAMMS223 Alemtuzumab 12 mg IV Q year 112 309.09 1FN β-1a 44 mcg SC TIW 111 247.22 CARE-MS I Alemtuzumab 12 mg IV Q year 376 661.11 1FN β-1a 44 mcg SC TIW 187 312.82 CARE-MS II Alemtuzumab 12 mg IV Q year 426 907.69 1FN β-1a 44 mcg SC TIW 202 386.54 HERMES Rituximab 1000 mg IV on days 18.15 69 59.227.2 SELECT Daclizumab 150 mg SC Q 4 weeks 201 217.75	AFFIRM Natalizumab 300 mg IV Q 4 weeks Placebo IV Q 4 weeks S15 578 1200 276 315 578 422 CAMMS223 Alemtuzumab 12 mg IV Q year 112 309.09 34 IFN β-1a 44 mcg SC TIW 111 247.22 89 CARE-MS I Alemtuzumab 12 mg IV Q year 376 661.11 119 IFN β-1a 44 mcg SC TIW 187 312.82 122 CARE-MS II Alemtuzumab 12 mg IV Q year 426 907.69 236 IFN β-1a 44 mcg SC TIW 202 386.54 201 HERMES Rituximab 1000 mg IV on days 1&15 69 59.227.2 2119 Placebo IV 35 SELECT Daclizumab 150 mg SC Q 4 weeks 201 217.75 46	AFFIRM Natalizumab 300 mg IV Q 4 weeks Placebo IV Q 4 weeks Placebo IV Q 4 weeks 315 578 422 0.73 CAMMS223 Alemtuzumab 12 mg IV Q year 112 309.09 34 0.11 IFN β-1a 44 mcg SC TIW 111 247.22 89 0.36 CARE-MS I Alemtuzumab 12 mg IV Q year 376 661.11 119 0.18 IFN β-1a 44 mcg SC TIW 187 312.82 122 0.39 CARE-MS II Alemtuzumab 12 mg IV Q year 426 907.69 236 0.26 IFN β-1a 44 mcg SC TIW 202 386.54 201 0.52 HERMES Rituximab 1000 mg IV on days 1&15 69 59.227.2 2119 0.40.7 Placebo IV 35

Reference	Study	Group*	N	Person- years	Relapses	ARR	95% CI
Kappos 2015 ⁸²	DECIDE	Daclizumab 150 mg SC Q 4 weeks	919	1692.5	372	0.22	0.19-0.24
		IFN β-1a 30 mg IM Q week	922	1698	662	0.39	0.35-0.44
Ocrelizumab							
Hauser 2017 ¹⁴	OPERA I	Ocrelizumab 600 mg IV Q 24 weeks	410	754.3	121	0.16	0.12-0.20
		IFN β-1a 44 mcg SC TIW	411	756.2	219	0.29	0.24-0.36
Hauser 2017 ¹⁴	OPERA II	Ocrelizumab 600 mg IV Q 24 weeks	417	767.2	123	0.16	0.12-0.20
		IFN β-1a 44 mcg SC TIW	418	769.1	223	0.29	0.23-0.36

Table C5. 24-week Confirmed Disability Progression Outcomes by Study

Reference	Study	Group N		EDSS Prog24	HR	95% CI	Included in Base Case NMA?
Interferon β-1a 30 mcg (Avonex)							
Jacobs 1996 ⁷⁹	-	IFN β-1a 30 mcg IM Q week	158	35	NR	P=0.02	Υ
		Placebo IM Q week	143	50			
Calabrese 2012 ¹⁴⁸	-	IFN β-1a 30 mcg IM Q week	55	NR			N
		IFN β-1a 44 mcg SC TIW	55	NR			
		Glatiramer 20 mg SC QD	55	NR			
Lublin 2013 ⁴⁴	CombiRx	IFN β-1a 30 mcg IM Q week	241	52	NR	NS	Υ
		Glatiramer 20 mg SC QD	246	61			
Vollmer 2014 ¹⁰⁰	BRAVO	IFN β-1a 30 mcg IM Q week	447	35	0.73	0.47-1.14	Υ
		Placebo IM Q week	450	46			
Interferon β-1b 250 mcg (Betaseron)			'		,	
IFNβ Multiple Sclerosis	-	IFN β-1b 250 SC mcg QOD	122	43	NR	NS	Υ
Study Group 1993 ⁹¹		Placebo	122	56			
Durelli 2002 ¹⁴⁹	INCOMIN	IFN β-1b 250 SC mcg QOD	96	13	0.44	0.25-0.80	Υ
		IFN β-1a 30 mcg IM Q week	92	28			
Etemadifar 2006 ¹⁵⁰	-	IFN β-1b 250 SC mcg QOD	30	NR			N
		IFN β-1a 30 mcg IM Q week	30	NR			

Reference	Study	Group	N	EDSS Prog24	HR	95% CI	Included in Base Case NMA?
		IFN β-1a 44 mcg SC TIW	30	NR			
Cadavid 2009 ¹⁵¹	BECOME	IFNβ-1b 250 SC mcg QOD	36	NR			N
		Glatiramer 20 mg SC QD	39	NR			
O'Connor 2009 ¹⁵²	BEYOND	IFNβ-1b 250 SC mcg QOD	897	NR			N
		Glatiramer 20 mg SC QD	448	NR			
Glatiramer Acetate (Copaxone)	'		'		'		
Bornstein 1987 ¹³	-	Glatiramer 20 mg SC QD	25	NR			N
		Placebo SC QD	23	NR			
Johnson 1995 ⁹²	-	Glatiramer 20 mg SC QD	125	NR			N
		Placebo SC QD	126	NR			
Khan 2013 ¹⁶	GALA	Glatiramer 40 mg SC TIW	943	NR			N
		Placebo SC QD	461	NR			
Interferon β-1a 22/44 mcg (Reb	oif)						
PRISMS 1998 ⁹³	PRISMS	IFN β-1a 22 mcg SC TIW	189	NR			N
		IFN β-1a 44 mcg SC TIW	184	NR			
		Placebo SC TIW	187	NR			
Panitch 2002 ¹⁵³	EVIDENCE	IFN β-1a 44 mcg SC TIW	339	20	0.70	0.39-1.25	Υ
		IFN β-1a 30 mcg IM Q week	338	28			
Mikol 2008 ¹⁵⁴	REGARD	IFN β-1a 44 mcg SC TIW	386	45	NR	P=0.12	Υ
		Glatiramer 20 mg SC QD	378	33			
Peginterferon β-1a (Plegridy)	·		·				
Calabresi 2014 ¹⁵⁵	ADVANCE	PEG β-1a 125 mcg SC Q 14 d	512	NR			N
		Placebo SC Q 14 d	500	NR			
Fingolimod (Gilenya)	·						
Cohen 2010 ⁸⁴	TRANSFORMS	Fingolimod 0.5 mg PO QD	429	NR			N
		IFN β-1a 30 mcg IM Q week	431	NR			
Kappos 2010 ⁸⁰	FREEDOMS	Fingolimod 0.5 mg PO QD	425	53	0.63	0.44-0.90	Υ

Reference	Study	Group	N	EDSS Prog24	HR	95% CI	Included in Base Case NMA?
		Placebo PO QD	418	79			
Calabresi 2014 ⁹⁵	FREEDOMS II	Fingolimod 0.5 mg PO QD	358	49	0.72	0.48-1.07	Υ
		Placebo PO QD	355	63			
Teriflunomide (Aubagio)							
O'Connor 2011 ⁹⁹	TEMSO	Teriflunomide 7 mg PO QD	365	NR			N
		Teriflunomide 14 mg PO QD	358	NR			
		Placebo PO QD	363	NR			
Confavreux 2014 ⁹⁶	TOWER	Teriflunomide 7 mg PO QD	407	NR			N
		Teriflunomide 14 mg PO QD	370	NR			
		Placebo PO QD	388	NR			
Vermersch 2014 ⁸⁵	TENERE	Teriflunomide 7 mg PO QD	109	NR			N
		Teriflunomide 14 mg PO QD	111	NR			
		IFN β-1a 44 mcg SC TIW	104	NR			
Dimethyl fumarate (Tecfidera)					<u> </u>	'	
Fox 2012 ⁸⁶	CONFIRM	Dimethyl fumarate 240 mg PO BID	359	NR	0.62	0.37-1.03	N
		Glatiramer 20 mg SC QD	350	NR	0.87	0.55-1.38	
		Placebo	363	NR			
Gold 2012 ⁹⁸	DEFINE	Dimethyl fumarate 240 mg PO BID	409	NR			N
		Placebo PO BID	408	NR			
Natalizumab (Tysabri)	'				'	,	
Polman 2006 ³¹	AFFIRM	Natalizumab 300 mg IV Q 4 weeks	627	NR	0.46	0.33-0.64	N
		Placebo IV Q 4 weeks	315	NR			
Alemtuzumab (Lemtrada)	'		· ·	<u> </u>	'		·
Coles 2008 ⁸⁸	CAMMS223	Alemtuzumab 12 mg IV Q year	112	8	0.25	0.11-0.57	Υ
		IFN β-1a 44 mcg SC TIW	111	24			

Reference	Study	Group	N	EDSS Prog24	HR	95% CI	Included in Base Case NMA?
Cohen 2012 ⁸⁷	CARE-MS I	Alemtuzumab 12 mg IV Q year	376	30	0.70	0.40-1.23	Υ
		IFN β-1a 44 mcg SC TIW	187	20			
Coles 2012 ⁸⁹	CARE-MS II	Alemtuzumab 12 mg IV Q year	426	54	0.58	0.38-0.87	Υ
		IFN β-1a 44 mcg SC TIW	202	40			
Rituximab (Rituxan)							
Hauser 2008 ⁸³	HERMES	Rituximab 1000 mg IV	69	NR			N
		Placebo IV	35	NR			
Daclizumab (Zinbryta)							
Gold 2013 ⁸¹	SELECT	Daclizumab 150 mg SC Q 4 weeks	201	NR			N
		Placebo SC Q 4 weeks	196	NR	NR		
Kappos 2015 ⁸²	DECIDE	Daclizumab 150 mg SC Q 4 weeks	919	120	0.79	0.59-1.06	N
		IFN β-1a 30 mcg IM Q week	922	167			
Ocrelizumab (Ocrevus)					<u> </u>		
Hauser 2017 ¹⁴	OPERA I	Ocrelizumab 600 mg IV Q 24 weeks	410	27	0.57	0.34-0.95	Υ
		IFN β-1a 44 mcg SC TIW	411	43			
Hauser 2017 ¹⁴	OPERA II	Ocrelizumab 600 mg IV Q 24 weeks	417	36	0.63	0.40-0.98	Υ
		IFN β-1a 44 mcg SC TIW	418	56			

Table C6. 12-week Confirmed EDSS Progression by Study

Reference	Study	Group	N	EDSS Prog12	HR	95% CI	Included in Base Case NMA?
Interferon β-1a 30 mcg (Avonex)							
Jacobs 1996 ⁷⁹	-	IFN β-1a 30 mcg IM Q week	158	NR			N
		Placebo IM Q week	143	NR			
Calabrese 2012 ¹⁴⁸	-	IFN β-1a 30 mcg IM Q week	55	NR			N
		IFN β-1a 44 mcg SC TIW	55	NR			
		Glatiramer 20 mg SC QD	55	NR			
Lublin 2013 ⁴⁴	CombiRx	IFN β-1a 30 mcg IM Q week	241	NR			N
		Glatiramer 20 mg SC QD	246	NR			
Vollmer 2014 ¹⁰⁰	BRAVO	IFN β-1a 30 mcg IM Q week	447	47	0.74	0.51-1.09	N
		Placebo IM Q week	450	60			
Interferon β-1b 250 mcg (Betaseron)	'						
IFNβ Multiple Sclerosis	-	IFN β-1b 250 SC mcg QOD	122	NR			N
Study Group 1993 ⁹¹		Placebo	122	NR			
Durelli 2002 ¹⁴⁹	INCOMIN	IFN β-1b 250 SC mcg QOD	96	NR			N
		IFN β-1a 30 mg IM Q week	92	NR			
Etemadifar 2006 ¹⁵⁰	-	IFN β-1b 250 SC mcg QOD	30	NR			N
		IFN β-1a 30 mg IM Q week	30	NR			
		IFN β-1a 44 mg SC TIW	30	NR			
Cadavid 2009 ¹⁵¹	BECOME	IFN β-1b 250 SC mcg QOD	36	NR			N
		Glatiramer 20 mg SC QD	39	NR			
O'Connor 2009 ¹⁵²	BEYOND	IFN β-1b 250 SC mcg QOD	897	188	NR	P=0.68	Υ
		Glatiramer 20 mg SC QD	448	90			
Glatiramer Acetate (Copaxone)			<u> </u>	<u> </u>			
Bornstein 1987 ¹³	-	Glatiramer 20 mg SC QD	25	NR			N
		Placebo SC QD	23	NR			
Johnson 1995 ⁹²	-	Glatiramer 20 mg SC QD	125	27	NR	NS	Υ
		Placebo SC QD	126	31			

Reference	Study	Group	N	EDSS Prog12	HR	95% CI	Included in Base Case NMA?
Khan 2013 ¹⁶	GALA	Glatiramer 40 mg SC TIW	943	42			Υ
		Placebo SC QD	461	17			
Interferon β-1a 22/44 mcg (Rebif)							
PRISMS 1998 ⁹³	PRISMS	IFN β-1a 22 mcg SC TIW	189	64	0.68	0.48-0.98	Υ
		IFN β-1a 44 mcg SC TIW	184	54	0.62	0.43-0.91	
		Placebo SC TIW	187	77			
Panitch 2002 ¹⁵³	EVIDENCE	IFN β-1a 44 mcg SC TIW	339	43	0.87	0.58-1.31	N
		IFN β-1a 30 mg IM Q week	338	49			
Mikol 2008 ¹⁵⁴	REGARD	IFN β-1a 44 mcg SC TIW	386	NR			N
		Glatiramer 20 mg SC QD	378	NR			
Peginterferon β-1a (Plegridy)							
Calabresi 2014 ¹⁵⁵	ADVANCE	PEG β-1a 125 mcg SC Q 14 d	512	31	.62	0.40-0.97	Υ
		Placebo SC Q 14 d	500	50			
Fingolimod (Gilenya)	'						
Cohen 2010 ⁸⁴	TRANSFORMS	Fingolimod 0.5 mg PO QD	429	25		NS	Υ
		IFN β-1a 30 mg IM Q week	431	34			
Kappos 2010 ⁸⁰	FREEDOMS	Fingolimod 0.5 mg PO QD	425	75	0.70	0.52-0.96	N
		Placebo PO QD	418	101			
Calabresi 2014 ⁹⁵	FREEDOMS II	Fingolimod 0.5 mg PO QD	358	91	0.83	0.61-1.12	N
		Placebo PO QD	355	103			
Teriflunomide (Aubagio)							
O'Connor 2011 ⁹⁹	TEMSO	Teriflunomide 7 mg PO QD	365	68	0.76	0.56-1.05	Υ
		Teriflunomide 14 mg PO QD	358	62	0.70	0.51-0.97	
		Placebo PO QD	363	86			

Reference	Study	Group	N	EDSS Prog12	HR	95% CI	Included in Base Case NMA?
Confavreux 2014 ⁹⁶	TOWER	Teriflunomide 7 mg PO QD	407	65	0.95	0.68-1.35	Υ
		Teriflunomide 14 mg PO QD	370	44	0.68	0.47-1.00	
		Placebo PO QD	388	65			
Vermersch 2014 ⁸⁵	TENERE	Teriflunomide 7 mg PO QD	109	NR			N
		Teriflunomide 14 mg PO QD	111	NR			
		IFN β-1a 44 mg SC TIW	104	NR			
Dimethyl fumarate (Tecfidera)			<u>'</u>		'	<u>'</u>	
Fox 2012 ⁸⁶	CONFIRM	Dimethyl fumarate 240 mg PO BID	359	47	0.79	0.52-1.19	Υ
		Glatiramer 20 mg SC QD	350	56	0.93	0.63-1.37	
		Placebo	363	62			
Gold 2012 ⁹⁸	DEFINE	Dimethyl fumarate 240 mg PO BID	409	65	0.62	0.44-0.87	Υ
		Placebo PO BID	408	110			
Natalizumab (Tysabri)	'						-1
Polman 2006 ³¹	AFFIRM	Natalizumab 300 mg IV Q 4 weeks	627	107	0.58	0.43-0.77	Υ
		Placebo IV Q 4 weeks	315	91			
Alemtuzumab (Lemtrada)							1
Coles 2008 ⁸⁸	CAMMS223	Alemtuzumab 12 mg IV Q year	112	16	0.42	0.23-0.77	N
		IFN β-1a 44 mcg SC TIW	111	30			
Cohen 2012 ⁸⁷	CARE-MS I	Alemtuzumab 12 mg IV Q year	376	NR			N
		IFN β-1a 44 mcg SC TIW	187	NR			
Coles 2012 ⁸⁹	CARE-MS II	Alemtuzumab 12 mg IV Q year	426	NR			N
		IFN β-1a 44 mcg SC TIW	202	NR			
Rituximab (Rituxan)							<u> </u>
Hauser 2008 ⁸³	HERMES	Rituximab 1000 mg IV	69	NR			N
		Placebo IV	35	NR			
Daclizumab (Zinbryta)						<u> </u>	
Gold 2013 ⁸¹	SELECT	Daclizumab 150 mg SC Q 4 weeks	201	11	0.43	0.21-0.88	Υ
		Placebo SC Q 4 weeks	196	25			

Reference	Study	udy Group		EDSS Prog12	HR	95% CI	Included in Base Case NMA?
Kappos 2015 ⁸²	DECIDE	Daclizumab 150 mg SC Q 4 weeks	919	147	0.84	0.66-1.07	Υ
		IFN β-1a 30 mg IM Q week	922	184			
Ocrelizumab (Ocrevus)							
Hauser 2017 ¹⁴	OPERA I	Ocrelizumab 600 mg IV Q 24 weeks	410	34	0.57	0.37-0.90	N
		IFN β-1a 44 mcg SC TIW	411	53			
Hauser 2017 ¹⁴	OPERA II	Ocrelizumab 600 mg IV Q 24 weeks	417	47	0.63	0.42-0.92	N
		IFN β-1a 44 mcg SC TIW	418	73			

<u>Appendix D. Network Meta-Analysis Methods</u> <u>and Results</u>

Network Meta-Analysis Methods

We used WinBUGS version 1.4.3 to perform a Bayesian NMA using Markov Chain Monte Carlo methods to combine direct and indirect evidence for annualized relapse rates and the risk for confirmed disability progression sustained for 24 weeks.

Uninformative priors were used for both analyses to allow the study results to inform the estimated pooled relative risks. For our primary results, we used a random-effects model. We expected *a priori* that the random-effects model would be more appropriate because of the differences in patient population and cohort effects over the time-period covered by the trials included in the NMA. The deviance information criteria (DIC) and residual deviance (resdev) statistics were similar for the fixed and random effects models for both analyses. All pairwise comparisons were estimated as medians with their 95% credible intervals.

For the ARR analyses, the primary inputs to the NMA were the number of relapses and the treatment exposure time in person-years. ARR was modeled as a Poisson distribution. In general, the trials that reported ARRs adjusted for baseline characteristics of the participants rather than crude ARRs. In order to be faithful to the reported ARRs, we used the reported ARRs and person-years of follow-up to calculate the number of relapses in each arm of a trial. If the study did not report person-years of follow-up, we estimated it using the ARR and number of relapses reported in the trial. If the number of relapses was not reported, then we estimated the person-years of follow-up from Kaplan-Meier curves, if reported, or by the treatment duration multiplied by the number of participants completing the trial. Our preliminary inputs were provided to each manufacturer and most provided additional data, primarily for the treatment exposure time in each arm of the respective trials.

For disability progression, the primary inputs to the model were the number of patients with confirmed disability progression and the number randomized to each treatment group analyzed as a binomial outcome. We used a dichotomous model as our primary analysis due to the limited number of studies that reported disability progression as a continuous measure. For our primary analysis, we preferentially used sustained disability progression that was confirmed at 24 weeks (or 6 months) and used confirmed disability progression sustained at 12 weeks (or 3 months) when the preferred 24-week outcome was not available. We chose to combine the two outcomes in order to maximize the data available for direct and indirect comparisons in the network. We assessed the effect of this approach to imputation by comparing our primary results to those obtained when

restricting the network to trials reporting 24-week sustained disability progression and to the results using 12-week sustained disability progression. Finally, we compared our results to prior published NMA results for sustained disability progression. The relative ordering of drug effectiveness and the magnitude of the relative risk were similar in all analyses with a few exceptions, which are discussed in detail in the results section in the full report.

Methods Used to Assess Heterogeneity

We performed several analyses to assess the impact of heterogeneity on our results. As noted above, for disability progression, we analyzed the results using solely a 24-week or 12-week definition for sustained disability. For both analyses, we assessed the impact of excluding poor quality trials, smaller trials (<100 participants in any arm, which also excludes phase II trials), trials of treatment-naïve patients, trials including treatment-experienced patients, trials with a study duration less than 18 months, trials using the Poser criteria, trials using the McDonald criteria, and open-label trials. We report both the fixed- and random-effects model results of the base-case analysis. We also performed meta-regression to assess the impact of disease duration, mean number of relapses in the prior year, and baseline EDSS score on the NMA estimates. We acknowledge the limitations of using trial level data for the meta-regression analyses, but individual patient level data, which would allow for a more detailed meta-analysis, were not available.

WinBUGS Code

Base-case Model: Annual Relapse Rate

```
model{
for(i in 1:ns){
  w[i,1] <- 0
  delta[i,1] <- 0
  mu[i] \sim dnorm(0,.0001)
  for (k in 1:na[i]) {
     r[i,k] ~ dpois(theta[i,k])
    theta[i,k] <- lambda[i,k]*E[i,k] # failure rate * exposure
     log(lambda[i,k]) <- mu[i] + delta[i,k] # model for linear predictor
    dev[i,k] <- 2*((theta[i,k]-r[i,k]) + r[i,k]*log(r[i,k]/theta[i,k]))
                                                                             }
  resdev[i] <- sum(dev[i,1:na[i]])
  for (k in 2:na[i]) {
     delta[i,k] ~ dnorm(md[i,k],taud[i,k])
     md[i,k] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k]
     taud[i,k] <- tau *2*(k-1)/k
     w[i,k] < -(delta[i,k] - d[t[i,k]] + d[t[i,1]])
    sw[i,k] <- sum(w[i,1:k-1])/(k-1)
```

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

```
}
   }
totresdev <- sum(resdev[])
d[1]<-0
for (k \text{ in } 2:nt) \{ d[k] \sim dnorm(0,.0001) \}
for (c in 1:(nt-1))
                             for (k in (c+1):nt)
                                                        RR[k,c] \leftarrow exp(d[k] - d[c])
                                                        RR[c,k] \leftarrow 1/RR[k,c]
sd \sim dunif(0,5)
tau <- pow(sd,-2)
tau2<- 1/tau
for (i in 1:ns) {
                                                         mu1[i] <- mu[i] * equals(t[i,1],1)
                                                        count1[i] <- equals(t[i,1],1)
                                                        }
for (k \text{ in 1:nt}) \{ log(T[k]) <- sum(mu1[])/sum(count1[]) + d[k] \}
}
Base-case Model: Disability Progression
model
for(i in 1:NS)
    w[i,1] < -0
    delta[i,1]<-0
     mu[i] \sim dnorm(0,.0001)
        for (k in 1:na[i]){
            r[i,k] \sim dbin(p[i,k],n[i,k])
            logit(p[i,k]) <- mu[i] + delta[i,k]</pre>
             rhat[i,k] \leftarrow p[i,k] * n[i,k]
             dev[i,k] < -2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,k]-r[i,k]-r[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]-r[i,
rhat[i,k])))
            }
     resdev[i] <- sum(dev[i,1:na[i]])
    for (k in 2:na[i]){
        delta[i,k] ~ dnorm(md[i,k],taud[i,k])
        md[i,k] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k]
```

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

```
taud[i,k] <- tau *2*(k-1)/k
  w[i,k] \leftarrow (delta[i,k] - d[t[i,k]] + d[t[i,1]])
  sw[i,k] <- sum(w[i,1:k-1])/(k-1)
  }
}
totresdev <- sum(resdev[])
d[1]<-0
for (k in 2:NT){
 d[k] ~ dnorm(0,.0001) # vague priors for basic parameters
 }
sd~dunif(0,2)
tau<-1/pow(sd,2)
# ranking
for (k in 1:NT){
 rk[k] < -NT+1-rank(d[],k)
 best[k]<-equals(rk[k],1)
 for (h in 1:NT){
  prob[k,h]<-equals(rk[k],h)</pre>
  }
for (k in 1:NT){
 for (h in 1:NT){
  cumeffectiveness[k,h]<-sum(prob[k,1:h])
  }
 }
for(i in 1:NT){
 SUCRA[i]<-sum(cumeffectiveness[i,1:(NT-1)])/(NT-1)
 }
# pairwise ORs
for (c in 1:(NT-1)){
 for (k in (c+1):NT){
  OR[c,k] \leftarrow exp(d[k] - d[c])
  IOR[c,k] < -d[k] -d[c]
  }
for (i in 1:NS){
 mu1[i] <- mu[i] * equals(t[i,1],1)
 count1[i] <- equals(t[i,1],1)
L<-sum(mu1[])/sum(count1[])
#RR
for (k in 1:NT) {
 logit(T[k]) \leftarrow d[k] + L
 }
```

```
for (c in 1:(NT-1)){
 for (k in (c+1):NT){
  RR[k,c] \leftarrow T[c]/T[k]
  RR[c,k] \leftarrow T[k]/T[c]
  }
 }
Fixed-Effects Model: Annualized Relapse Rate
model{
for(i in 1:ns){
  mu[i] \sim dnorm(0,.0001)
  for (k in 1:na[i]) {
     r[i,k] ~ dpois(theta[i,k])
     theta[i,k] <- lambda[i,k]*E[i,k] # failure rate * exposure
     log(lambda[i,k]) \leftarrow mu[i] + d[t[i,k]] - d[t[i,1]]
     dev[i,k] <- 2*((theta[i,k]-r[i,k]) + r[i,k]*log(r[i,k]/theta[i,k])))
  resdev[i] <- sum(dev[i,1:na[i]])
totresdev <- sum(resdev[])
d[1]<-0
for (k \text{ in } 2:nt) \{ d[k] \sim dnorm(0,.0001) \}
for (c in 1:(nt-1))
         for (k in (c+1):nt)
                 RR[k,c] \leftarrow exp(d[k] - d[c])
                 RR[c,k] \leftarrow 1/RR[k,c]
        }
for (i in 1:ns) {
                  mu1[i] <- mu[i] * equals(t[i,1],1)
                 count1[i] <- equals(t[i,1],1)
                 }
for (k \text{ in 1:nt}) \{ log(T[k]) <- sum(mu1[])/sum(count1[]) + d[k] \}
}
Fixed Effects Model: Disability Progression
model
for(i in 1:NS){
```

```
mu[i] \sim dnorm(0,.0001)
   for (k in 1:na[i]){
       r[i,k] \sim dbin(p[i,k],n[i,k])
       logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]
       rhat[i,k] \leftarrow p[i,k] * n[i,k]
       dev[i,k] < -2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-
rhat[i,k])))
      }
   resdev[i] <- sum(dev[i,1:na[i]])</pre>
  }
totresdev <- sum(resdev[])
d[1]<-0
for (k in 2:NT){
   d[k] \sim dnorm(0,.0001)
  }
# ranking
   for (k in 1:NT){
       rk[k] < -NT+1-rank(d[],k)
       best[k]<-equals(rk[k],1)
       for (h in 1:NT){
           prob[k,h]<-equals(rk[k],h)
          }
       }
   for (k in 1:NT){
       for (h in 1:NT){
          cumeffectiveness[k,h]<-sum(prob[k,1:h])</pre>
          }
       }
   for(i in 1:NT){
       SUCRA[i]<-sum(cumeffectiveness[i,1:(NT-1)])/(NT-1)
       }
# pairwise ORs
   for (c in 1:(NT-1)){
       for (k in (c+1):NT){
           OR[c,k] \leftarrow exp(d[k] - d[c])
           IOR[c,k] < -d[k] -d[c]
          }
   for (i in 1:NS){
       mu1[i] <- mu[i] * equals(t[i,1],1)
       count1[i] \leftarrow equals(t[i,1],1)
L<-sum(mu1[])/sum(count1[])
```

```
#RR
for (k in 1:NT){
  logit(T[k]) <- d[k] +L
  }
for (c in 1:(NT-1)){
  for (k in (c+1):NT){
    RR[k,c] <- T[c]/T[k]
    RR[c,k] <- T[k]/T[c]
  }
  }
}
```

Disability Progression Adjusted for Continuous Covariate

```
model{
   for(i in 1:NS){
        w[i,1] < -0
         delta[i,1]<-0
         mu[i] \sim dnorm(0,.0001)
         for (k in 1:na[i]){
             r[i,k] \sim dbin(p[i,k],n[i,k])
             logit(p[i,k]) \leftarrow mu[i] + delta[i,k] + (beta[t[i,k]]-beta[t[i,1]])*(x[i]-mx)
             rhat[i,k] \leftarrow p[i,k] * n[i,k]
             dev[i,k] < -2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) + (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]
rhat[i,k])))
            }
         resdev[i] <- sum(dev[i,1:na[i]])
         for (k in 2:na[i]){
             delta[i,k] ~ dnorm(md[i,k],taud[i,k])
             md[i,k] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k]
             taud[i,k] <- tau *2*(k-1)/k
             w[i,k] \leftarrow (delta[i,k] - d[t[i,k]] + d[t[i,1]])
             sw[i,k] <- sum(w[i,1:k-1])/(k-1)
            }
totresdev <- sum(resdev[])
d[1]<-0
beta[1]<-0
for (k in 2:NT){
   d[k] \sim dnorm(0,.0001)
   beta[k]<- B
B \sim dnorm(0, .0001)
sd^dunif(0,2)
```

```
tau<-1/pow(sd,2)
# ranking
 for (k in 1:NT){
  rk[k] < -NT+1-rank(d[],k)
  best[k]<-equals(rk[k],1)
  for (h in 1:NT){
    prob[k,h]<-equals(rk[k],h)</pre>
 for (k in 1:NT){
  for (h in 1:NT){
   cumeffectiveness[k,h]<-sum(prob[k,1:h])</pre>
   }
  }
 for(i in 1:NT){
  SUCRA[i]<-sum(cumeffectiveness[i,1:(NT-1)])/(NT-1)
  }
# pairwise ORs
 for (c in 1:(NT-1)){
  for (k in (c+1):NT){
   OR[c,k] \leftarrow exp(d[k] - d[c])
   IOR[c,k] < -d[k] -d[c]
   }
 for (i in 1:NS) {
  mu1[i] <- mu[i] * equals(t[i,1],1)
  count1[i] <- equals(t[i,1],1)</pre>
 L<-sum(mu1[])/sum(count1[])
#RR
 for (k in 1:NT){
  logit(T[k]) \leftarrow d[k] + L
 for (c in 1:(NT-1)){
  for (k in (c+1):NT){
   RR[k,c] \leftarrow T[c]/T[k]
   RR[c,k] \leftarrow T[k]/T[c]
   }
}
```

Annualized Relapse Rate Adjusted for Continuous Covariate

model{

```
for(i in 1:ns){
  w[i,1] <- 0
  delta[i,1] <- 0
  mu[i] \sim dnorm(0,.0001)
  for (k in 1:na[i]) {
     r[i,k] ~ dpois(theta[i,k])
     theta[i,k] <- lambda[i,k]*E[i,k] # failure rate * exposure
     log(lambda[i,k]) \leftarrow mu[i] + delta[i,k] + (beta[t[i,k]]-beta[t[i,1]])*(x[i]-mx)
     dev[i,k] <- 2*((theta[i,k]-r[i,k]) + r[i,k]*log(r[i,k]/theta[i,k]))
  resdev[i] <- sum(dev[i,1:na[i]])
  for (k in 2:na[i]) {
     delta[i,k] ~ dnorm(md[i,k],taud[i,k])
     md[i,k] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k]
     taud[i,k] <- tau *2*(k-1)/k
     w[i,k] \leftarrow (delta[i,k] - d[t[i,k]] + d[t[i,1]])
     sw[i,k] <- sum(w[i,1:k-1])/(k-1)
   }
totresdev <- sum(resdev[])
d[1]<-0
beta[1]<-0
for (k \text{ in } 2:nt) \{ d[k] \sim dnorm(0,.0001) \}
beta[k]<-B
for (c in 1:(nt-1))
         for (k in (c+1):nt)
                  RR[k,c] \leftarrow exp(d[k] - d[c])
                 RR[c,k] \leftarrow 1/RR[k,c]
         }
B ~ dnorm(0, .0001)
sd \sim dunif(0,5)
tau <- pow(sd,-2)
tau2<- 1/tau
for (i in 1:ns) {
                  mu1[i] <- mu[i] * equals(t[i,1],1)
                 count1[i] <- equals(t[i,1],1)
                 }
for (k \text{ in 1:nt}) \{ log(T[k]) <- sum(mu1[])/sum(count1[]) + d[k] \}
}
```

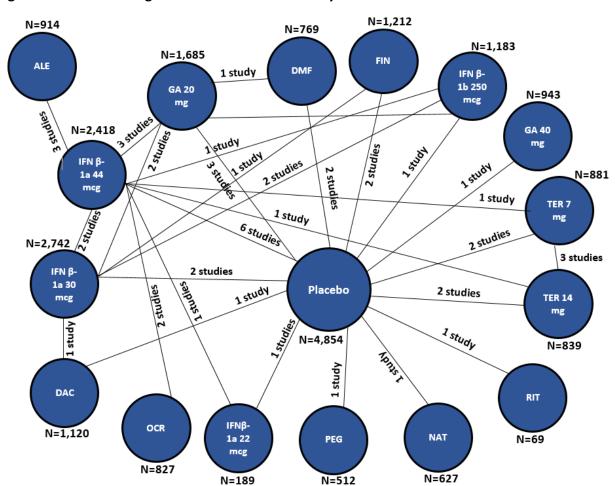


Figure D1. Network Diagram for Base-case ARR Analysis.

Table D1. NMA Sensitivity Analyses for ARR

Tuestuest	Dans Casa ADD	Divert Mate Avaluate	Fixed Effects Results	Covariate: Disease	Covariate: Mean #	Covariate: Baseline EDSS
Treatment	Base Case ARR	Direct Meta-Analysis	Fixed Effects Results	Duration	Relapses in Prior Year	State
ALE	0.28	N/A	0.30	0.31	0.27	0.30
ALL	(0.22-0.35)	IV/A	(0.25-0.35)	(0.23-0.39)	(0.19-0.35)	(0.23-0.39)
NAT	0.31	0.32	0.31	0.32	0.31	0.30
IVAT	(0.25-0.40)	(0.27-0.37)	(0.27-0.37)	(0.24-0.41)	(0.23-0.42)	(0.23-0.38)
OCR	0.35	N/A	0.36	0.35	0.33	0.38
OCK	(0.27-0.44)	NA	(0.30-0.43)	(0.26-0.45)	(0.24-0.44)	(0.29-0.50)
FIN	0.46	0.48	0.47	0.47	0.46	0.52
1114	(0.39-0.55)	(0.42-0.56)	(0.41-0.53)	(0.33-0.62)	(0.37-0.56)	(0.42-0.66)
DAC	0.46	0.46	0.47	0.46	0.44	0.50
DAC	(0.38-0.58)	(0.32-0.65)	(0.40-0.54)	(0.37-0.59)	(0.33-0.57)	(0.40-0.66)
RIT	0.51	0.51	0.51	0.49	0.42	0.56
IMI	(0.27-0.93)	(0.27-0.95)	(0.27-0.95)	(0.26-0.99)	(0.21-0.89)	(0.28-1.09)
DMF	0.53	0.55	0.53	0.52	0.51	0.55
Divil	(0.43-0.63)	(0.47-0.64)	(0.46-0.62)	(0.42-0.64)	(0.39-0.63)	(0.45-0.68)
GA 20 mg	0.63	0.56	0.64	0.63	0.61	0.68
GA 20 mg	(0.55-0.71)	(0.37-0.85)	(0.58-0.70)	(0.53-0.71)	(0.50-0.71)	(0.58-0.81)
PEG	0.63	0.64	0.64	0.63	0.66	N/A
	(0.47-0.86)	(0.50-0.82)	(0.50-0.82)	(0.46-0.88)	(0.47-0.94)	NYA
IFN β-1a 44 mcg	0.64	0.68	0.65	0.64	0.61	0.68
11 14 p-10 44 mcg	(0.54-0.73)	(0.59-0.78)	(0.59-0.72)	(0.52-0.73)	(0.48-0.73)	(0.57-0.81)
IFN β-1b 250 mcg	0.65	0.66	0.66	0.64	0.62	0.68
11 14 p-15 250 mcg	(0.55-0.77)	(0.54-0.80)	(0.59-0.74)	(0.50-0.77)	(0.48-0.74)	(0.57-0.82)
TER 14 mg	0.67	0.67	0.67	0.67	0.65	0.76
151/ 14 11/9	(0.56-0.79)	(0.59-0.75)	(0.59-0.75)	(0.50-0.84)	(0.52-0.79)	(0.62-1.00)
GA 40mg	0.67	0.66	0.67	0.66	0.64	0.81
GA TOME	(0.52-0.86)	(0.55-0.78)	(0.56-0.80)	(0.48-0.89)	(0.45-0.86)	(0.59-1.21)
IEN 0 10 22 mag	0.70	0.71	0.70	0.69	0.68	0.74
IFN β-1a 22 mcg	(0.55-0.85)	(0.62-0.82)	(0.61-0.80)	(0.54-0.86)	(0.51-0.87)	(0.58-0.93)
	0.77	0.74	0.76	0.77	0.76	0.89
TER 7 mg	(0.67-0.93)	(0.65-0.84)	(0.68-0.86)	(0.59-0.99)	(0.63-0.94)	(0.72-1.18)
IFN 0 4- 20 mag	0.83	0.78	0.83	0.83	0.79	0.88
IFN β-1a 30 mcg	(0.74-0.94)	(0.69-0.90)	(0.76-0.91)	(0.72-0.95)	(0.64-0.93)	(0.77-1.04)

©Institute for Clinical and Economic Review, 2017 Evidence Report: DMTs for RRMS and PPMS

Table D2. NMA Subgroup Analyses for ARR

Treatment	Base Case ARR	Tx-naïve Population	Tx-naïve + Experienced Population	Exclude Trials with n<100	Trials Using Poser Criteria	Trials Using McDonald Criteria	Exclude Poor- quality Trials	Exclude Trials w/ Duration <18 months	Exclude Open- label Trials	
ALE	0.28 (0.22-0.35)	0.18 (0.07-0.33)	0.32 (0.24-0.42)	0.31 (0.26-0.38)	N/A	0.29 (0.20-0.40)	0.32 (0.24-0.41)	0.29 (0.21-0.36)	0.21 (0.13-0.33)	
NAT	0.31 (0.25-0.40)	N/A	0.31 (0.26-0.39)	0.31 (0.26-0.38)	N/A	0.31 (0.24-0.41)	0.32 (0.24-0.41)	0.32 (0.24-0.42)	0.31 (0.25-0.40)	
OCR	0.35 (0.27-0.44)	N/A	0.36 (0.28-0.45)	0.39 (0.31-0.48)	N/A	0.36 (0.24-0.50)	0.36 (0.27-0.47)	N/A	0.38 (0.28-0.52)	
FIN	0.46 (0.39-0.55)	N/A	0.46 (0.39-0.54)	0.47 (0.40-0.54)	N/A	0.46 (0.38-0.56)	0.43 (0.34-0.54)	0.49 (0.39-0.60)	0.47 (0.39-0.56)	
DAC	0.46 (0.38-0.58)	N/A	0.45 (0.37-0.55)	0.47 (0.40-0.56)	N/A	0.47 (0.37-0.59)	0.45 (0.30-0.68)	0.47 (0.34-0.64)	0.48 (0.37-0.60)	
RIT	0.51 (0.27-0.93)	N/A	0.51 (0.27-0.98)	N/A	N/A	0.51 (0.27-0.96)	N/A	N/A	0.51 (0.27-1.02)	
DMF	0.53 (0.43-0.63)	N/A	0.55 (0.46-0.65)	0.60 (0.51-0.71)	N/A	0.53 (0.43-0.65)	N/A	0.53 (0.42-0.65)	0.51 (0.38-0.67)	
GA 20 mg	0.63 (0.55-0.71)	0.46 (0.27-0.65)	0.74 (0.63-0.85)	0.68 (0.60-0.76)	0.47 (0.20-0.92)	0.65 (0.53-0.78)	0.58 (0.46-0.68)	0.63 (0.53-0.71)	0.70 (0.54-0.92)	
PEG	0.63 (0.47-0.86)	N/A	0.64 (0.48-0.84)	0.64 (0.49-0.83)	N/A	0.64 (0.47-0.88)	0.64 (0.46-0.88)	N/A	0.64 (0.47-0.86)	
IFN β-1a 44 mcg	0.64 (0.54-0.73)	0.46 (0.23-0.74)	0.65 (0.55-0.74)	0.69 (0.61-0.79)	0.65 (0.31-1.30)	0.65 (0.47-0.85)	0.66 (0.54-0.78)	0.64 (0.51-0.75)	0.68 (0.54-0.86)	
IFN β-1b 250 mcg	0.65 (0.55-0.77)	0.54 (0.34-0.76)	N/A	0.70 (0.60-0.81)	0.63 (0.31-1.32)	0.69 (0.51-0.92)	0.61 (0.47-0.76)	0.65 (0.53-0.76)	0.65 (0.50-0.85)	
TER 14 mg	0.67 (0.56-0.79)	N/A	0.66 (0.57-0.78)	0.65 (0.56-0.75)	N/A	0.67 (0.56-0.80)	N/A	0.66 (0.54-0.81)	0.67 (0.55-0.79)	
GA 40 mg	0.67 (0.52-0.86)	N/A	0.67 (0.53-0.84)	0.67 (0.54-0.82)	N/A	0.67 (0.51-0.88)	0.67 (0.51-0.89)	N/A	0.67 (0.52-0.86)	
IFN β-1a 22 mcg	0.70 (0.55-0.85)	N/A	0.69 (0.57-0.83)	0.71 (0.60-0.84)	N/A	N/A	0.70 (0.54-0.89)	0.69 (0.53-0.87)	0.71 (0.56-0.90)	

Treatment	Base Case ARR	Tx-naïve Population	Tx-naïve + Experienced Population	Exclude Trials with n<100	Trials Using Poser Criteria	Trials Using McDonald Criteria	Exclude Poor- quality Trials	Exclude Trials w/ Duration <18 months	Exclude Open- label Trials
TER 7mg	0.77 (0.67-0.93)	N/A	0.77 (0.67-0.91)	0.75 (0.65-0.86)	N/A	0.78 (0.66-0.95)	N/A	0.74 (0.60-0.90)	0.74 (0.62-0.88)
IFN β-1a 30	0.83	0.78	0.80	0.84	0.88	0.83	0.81	0.84	0.86
mcg	(0.74-0.94)	(0.50-1.12)	(0.69-0.92)	(0.75-0.95)	(0.46-1.81)	(0.70-0.99)	(0.69-0.94)	(0.71-0.98)	(0.71-1.04)

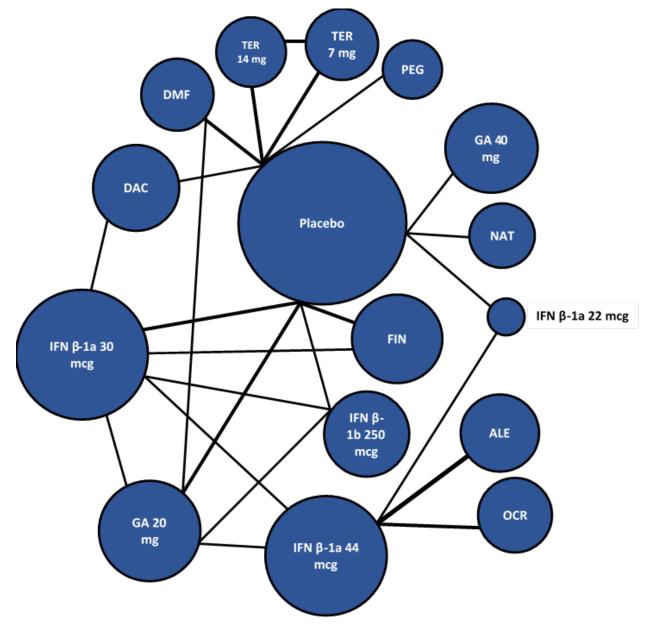


Figure D2. Network Diagram for Base-case Disability Progression Analysis

Legend: The width of the connecting lines are related to the number of trials available for each pair of treatments, and the size of each node is related to the number of study participants.¹⁵⁷

Table D3. League Table for NMA Subgroup Analysis of Trials Reporting 12-week Disability Progression

ALE															
0.72 (0.34-1.47)	OCR														
0.55 (0.24-1.24)	0.77 (0.41-1.37)	NAT													
0.52 (0.23-1.13)	0.73 (0.42-1.21)	0.93 (0.57-1.59)	DAC												
0.49 (0.20-1.17)	0.7 (0.35-1.28)	0.88 (0.50-1.64)	0.95 (0.53-1.71)	PEG											
0.49 (0.21-1.03)	0.69 (0.37-1.11)	0.87 (0.54-1.35)	0.94 (0.57-1.42)	0.98 (0.57-1.74)	DMF										
0.47 (0.24-0.86)	0.64 (0.46-0.86)	0.83 (0.51-1.40)	0.88 (0.58-1.36)	0.94 (0.54-1.66)	0.96 (0.64-1.53)	IFN β-1a 44 mcg		_							
0.43 (0.19-0.96)	0.62 (0.33-1.00)	0.78 (0.50-1.24)	0.84 (0.53-1.31)	0.88 (0.51-1.50)	0.90 (0.61-1.35)	0.95 (0.59-1.42)	TER 14 mg		_						
0.41 (0.19-0.90)	0.59 (0.33-0.96)	0.74 (0.49-1.19)	0.81 (0.53-1.18)	0.86 (0.49-1.45)	0.86 (0.61-1.23)	0.90 (0.59-1.34)	0.96 (0.66-1.39)	FIN		_					
0.40 (0.18-0.83)	0.56 (0.31-0.91)	0.72 (0.42-1.22)	0.77 (0.46-1.26)	0.82 (0.43-1.47)	0.83 (0.52-1.35)	0.86 (0.57-1.29)	0.91 (0.57-1.49)	0.96 (0.61-1.49)	IFN β-1a 22 mcg		_				
0.40 (0.18-0.80)	0.55 (0.33-0.84)	0.71 (0.45-1.10)	0.76 (0.56-0.97)	0.80 (0.46-1.36)	0.8 (0.55-1.20)	0.85 (0.59-1.16)	0.90 (0.61-1.32)	0.93 (0.69-1.28)	0.98 (0.63-1.52)	IFN β-1a 30 mcg		_			
0.36 (0.16-0.80)	0.52 (0.28-0.84)	0.65 (0.42-1.01)	0.71 (0.45-1.08)	0.74 (0.43-1.27)	0.74 (0.53-1.10)	0.79 (0.5-1.19)	0.83 (0.63-1.12)	0.87 (0.61-1.22)	0.90 (0.57-1.46)	0.93 (0.64-1.38)	TER 7 mg		_		
0.35 (0.16-0.78)	0.49 (0.28-0.85)	0.64 (0.40-1.00)	0.68 (0.42-1.07)	0.72 (0.42-1.30)	0.73 (0.50-1.05)	0.76 (0.49-1.19)	0.81 (0.55-1.21)	0.84 (0.60-1.25)	0.87 (0.55-1.44)	0.91 (0.59-1.36)	0.97 (0.68-1.43)	GA 20 mg			
0.34 (0.14-0.79)	0.47 (0.25-0.89)	0.61 (0.35-1.09)	0.65 (0.37-1.14)	0.69 (0.37-1.29)	0.70 (0.44-1.15)	0.73 (0.42-1.25)	0.78 (0.45-1.30)	0.81 (0.51-1.35)	0.84 (0.48-1.53)	0.87 (0.49-1.46)	0.93 (0.59-1.55)	0.95 (0.72-1.31)	IFN β-1b 250		
0.27 (0.11-0.64)	0.37 (0.19-0.73)	0.49 (0.26-0.87)	0.51 (0.29-0.93)	0.54 (0.27-1.06)	0.56 (0.32-0.95)	0.58 (0.32-1.04)	0.61 (0.35-1.09)	0.64 (0.38-1.11)	0.67 (0.37-1.23)	0.68 (0.41-1.19)	0.73 (0.43-1.29)	0.76 (0.43-1.32)	0.81 (0.42-1.47)	GA 40 mg	
0.31 (0.15-0.64)	0.45 (0.26-0.66)	0.56 (0.39-0.80)	0.60 (0.41-0.85)	0.63 (0.39-1.03)	0.65 (0.49-0.84)	0.68 (0.46-0.91)	0.71 (0.54-0.95)	0.75 (0.59-0.93)	0.78 (0.53-1.15)	0.80 (0.60-1.03)	0.86 (0.66-1.10)	0.88 (0.65-1.15)	0.92 (0.58-1.42)	1.17 (0.71-1.87)	Placebo

Legend: The DMTs are arranged from most effective (top left) to least effective (bottom right) Each box represents the estimated rate ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in bold signify that the 95% credible interval does not contain 1.

Table D4. League Table for NMA Subgroup Analysis of Trials Reporting 24-week Disability Progression

ALE								
0.89 (0.39 – 1.84)	OCR							
0.88 (0.31 – 1.90)	0.99 (0.36 – 2.09)	IFN β-1b 250 mcg						
0.79 (0.23 – 2.07)	0.89 (0.26 – 2.40)	0.90 (0.31 – 2.13)	DAC					
0.61 (0.18 – 1.71)	0.70 (0.19 – 2.00)	0.71 (0.29 – 1.54)	0.79 (0.27 – 2.07)	FIN				
0.60 (0.24 – 1.28)	0.67 (0.27 – 1.52)	0.69 (0.26 – 1.60)	0.75 (0.28 – 1.86)	0.96 (0.37 – 2.28)	GA 20 mg			
0.56 (0.33 – 0.91)	0.64 (0.36 – 1.11)	0.65 (0.23 – 1.63)	0.72 (0.26 – 1.90)	0.92 (0.33 – 2.38)	0.97 (0.49 – 1.81)	IFN β-1a 44 mcg		
0.56 (0.23 – 1.20)	0.64 (0.24 – 1.41)	0.65 (0.32 – 1.19)	0.72 (0.34 – 1.41)	0.91 (0.42 – 1.77)	0.95 (0.48 – 1.66)	0.99 (0.48 – 1.74)	IFNβ 1-a 30 mcg	
0.44 (0.15 – 1.06)	0.50 (0.16 – 1.27)	0.51 (0.25 – 0.92)	0.57 (0.23 – 1.28)	0.72 (0.41 – 1.18)	0.74 (0.32 – 1.51)	0.77 (0.32 – 1.57)	0.78 (0.47 – 1.26)	Placebo

Legend: The DMTs are arranged from most effective (top left) to least effective (bottom right) Each box represents the estimated rate ratio and 95% credible interval for the combined direct and indirect comparisons between two drugs. Estimates in bold signify that the 95% credible interval does not contain 1.

Table D5. NMA Sensitivity Analyses for Disability Progression

Treatment	Base Case RR for EDSS Progression	Direct Meta-analysis	Results using Fixed Effects	Results using Continuous Measures (Random Effects)	Covariate: Disease Duration	Covariate: Baseline EDSS State	Covariate: Mean # Relapses in Prior Year
ALE	0.42 (0.25-0.68)	N/A	0.43 (0.28-0.64)	0.31 (0.18-0.52)	0.45 (0.22-0.86)	0.39 (0.17-0.84)	0.37 (0.21-0.62)
OCR	0.47 (0.28-0.76)	N/A	0.47 (0.31-0.69)	0.35 (0.20-0.61)	0.43 (0.21-0.81)	0.43 (0.19-0.95)	0.40 (0.23-0.69)
DAC	0.54	0.43	0.55	0.54	0.51	0.49	0.58
	(0.36-0.78)	(0.22 - 0.85)	(0.41-0.72)	(0.34-0.85)	(0.29-0.82)	(0.22-1.06)	(0.37-0.88)
NAT	0.56	0.59	0.56	0.46	0.53	0.54	0.56
	(0.37-0.84)	(0.46 - 0.75)	(0.42-0.74)	(0.30-0.70)	(0.29-0.90)	(0.30-0.94)	(0.37-0.84)
DMF	0.62	0.66	0.62	0.62	0.58	0.58	0.67
	(0.46-0.84)	(0.51 – 0.85)	(0.49-0.77)	(0.45-0.87)	(0.35-0.91)	(0.30-1.10)	(0.48-0.94)
PEG	0.63 (0.37-1.02)	0.60 (0.39 - 0.93)	0.63 (0.41-0.93)	0.62 (0.37-1.02)	0.57 (0.25-1.13)	N/A	0.61 (0.36-0.99)
IFN β-1b 250 mcg	0.66	0.77	0.69	0.32	0.58	0.61	0.73
	(0.46-0.89)	(0.56 - 1.05)	(0.54-0.88)	(0.15-0.66)	(0.28-0.99)	(0.30-1.13)	(0.49-1.03)
FIN	0.68	0.71	0.68	0.67	0.61	0.62	0.68
	(0.51-0.90)	(0.56 - 0.90)	(0.55-0.85)	(0.49-0.93)	(0.24-1.27)	(0.27-1.32)	(0.52-0.90)
TER 14 mg	0.72	0.72	0.72	0.69	0.63	0.64	0.74
	(0.52-0.97)	(0.58 - 0.91)	(0.57-0.90)	(0.51-0.94)	(0.26-1.27)	(0.26-1.48)	(0.53-1.02)
IFN β-1a 44 mcg	0.73	0.96	0.73	0.58	0.67	0.67	0.63
	(0.52-0.99)	(0.52 - 1.77)	(0.56-0.93)	(0.39-0.85)	(0.40-1.08)	(0.34-1.28)	(0.42-0.93)
GA 20 mg	0.74	0.92	0.74	0.87	0.68	0.69	0.83
	(0.58-0.94)	(0.67 - 1.20)	0.61-0.89)	(0.52-1.48)	(0.41-1.04)	(0.35-1.29)	(0.62-1.11)
IFN β-1a 30 mcg	0.79	0.69	0.78	0.72	0.74	0.73	0.85
	(0.63-1.00)	(0.52 - 0.91)	(0.65-0.94)	(0.49-1.05)	(0.45-1.13)	(0.37-1.37)	(0.62-1.15)
IFN β-1a 22 mcg	0.81	0.82	0.81	0.68	0.76	0.76	0.76
	(0.52-1.23)	(0.63 - 1.07)	(0.58-1.12)	(0.44-1.04)	(0.41-1.31)	(0.36-1.50)	(0.49-1.16)
TER 7 mg	0.86	0.86	0.86	0.85	0.76	0.77	0.89
	(0.63-1.14)	(0.70 - 1.06)	(0.69-1.06)	(0.63-1.13)	(0.33-1.49)	(0.31-1.72)	(0.65-1.19)
GA 40 mg	1.17 (0.69-1.92)	1.21 (0.70 – 2.10)	1.18 (0.75-1.82)	N/A	1.07 (0.44-2.16)	1.05 (0.35-2.50)	1.25 (0.71-2.10)

Table D6. NMA Subgroup Analyses for Disability Progression

Treatment	Base Case RR for EDSS Progression	Tx-naïve Population	Tx-naïve and - experienced Population	Excluding Trials with n<100	Trials Using Poser Criteria	Trials Using MacDonald Criteria	Exclude Poor- quality Trials	Exclude trials with duration <18 months	Excluding Open-label Trials
ALE	0.42 (0.25-0.68)	0.43 (0.52 -2.15)	0.46 (0.26-0.83)	0.42 (0.27-0.67)	N/A	0.69 (0.36-1.31)	0.46 (0.23-0.91)	0.47 (0.26-0.80)	0.19 (0.07-0.51)
OCR	0.47 (0.28-0.76)	N/A	0.47 (0.29-0.76)	0.46 (0.29-0.73)	N/A	0.75 (0.39-1.47)	0.42 (0.21-0.85)	N/A	0.41 (0.22-0.75)
DAC	0.54 (0.36-0.84)	N/A	0.56 (0.37-0.81)	0.51 (0.36-0.72)	N/A	0.53 (0.36-0.76)	0.43 (0.18-1.00)	0.54 (0.30-0.95)	0.49 (0.31-0.75)
NAT	0.56 (0.37-0.84)	N/A	0.56 (0.37-0.81)	0.56 (0.39-0.80)	N/A	0.56 (0.38-0.80)	0.56 (0.30-1.01)	0.57 (0.35-0.91)	0.56 (0.37-0.85)
DMF	0.62 (0.46-0.84)	N/A	0.63 (0.46-0.83)	0.63 (0.48-0.82)	N/A	0.64 (0.49-0.85)	N/A	0.63 (0.45-0.89)	0.57 (0.37-0.86)
PEG	0.63 (0.37-1.02)	N/A	0.64 (0.37-1.00)	0.62 (0.39-0.97)	N/A	0.61 (0.36-0.98)	0.61 (0.31-1.18)	N/A	0.63 (0.37-1.02)
IFN β-1b 250 mcg	0.66 (0.46-0.89)	0.62 (0.14-1.53)	N/A	0.77 (0.56-1.05)	0.57 (0.14-1.49)	0.92 (0.58-1.43)	0.55 (0.28-0.94)	0.65 (0.42-0.90)	0.69 (0.40-1.14)
FIN	0.68 (0.51-0.90)	N/A	0.69 (0.52-0.90)	0.67 (0.52-0.86)	N/A	0.68 (0.52-0.88)	0.61 (0.37-1.01)	0.72 (0.50-1.02)	0.67 (0.49-0.87)
TER 14mg	0.72 (0.52-0.97)	N/A	0.71 (0.52-0.95)	0.72 (0.54-0.94)	N/A	0.71 (0.53-0.95)	N/A	0.72 (0.50-1.02)	0.72 (0.53-0.97)
IFN β-1a 44 mcg	0.73 (0.52-0.99)	0.89 (0.07-2.27)	0.74 (0.54-1.01)	0.72 (0.54-0.97)	0.68 (0.18-1.68)	1.15 (0.67-1.93)	0.68 (0.42-1.07)	0.80 (0.52-1.16)	0.64 (0.39-1.02)
GA 20 mg	0.74 (0.58-0.94)	0.71 (0.13-1.90)	0.76 (0.57-1.02)	0.76 (0.61-0.96)	0.89 (0.16-2.15)	0.89 (0.65-1.20)	0.64 (0.41-1.00)	0.74 (0.56-0.98)	0.86 (0.48-1.45)
IFN β-1a 30 mcg	0.79 (0.63-1.00)	0.67 (0.21-1.76)	0.83 (0.62-1.11)	0.74 (0.59-0.92)	0.85 (0.28-1.80)	0.77 (0.58-1.06)	0.76 (0.54-1.08)	0.76 (0.55-1.03)	0.70 (0.48-0.98)
IFN β-1a 22 mcg	0.81 (0.52-1.23)	N/A	0.82 (0.54-1.23)	0.81 (0.55-1.18)	0.80 (0.16-1.99)	N/A	0.78 (0.42-1.39)	0.85 (0.52-1.34)	0.77 (0.48-1.18)
TER 7 mg	0.86 (0.63-1.14)	N/A	0.86 (0.65-1.13)	0.86 (0.66-1.11)	N/A	0.86 (0.64-1.11)	N/A	0.86 (0.61-1.19)	0.86 (0.64-1.14)
GA 40mg	1.17 (0.69-1.92)	N/A	N/A	1.17 (0.72-1.88)	N/A	1.16 (0.60-1.91)	1.18 (0.59-2.18)	N/A	1.17 (0.68-1.91)

<u>Appendix E. Comparative Value Supplemental</u> <u>Information</u>

Table E1. DMT administration costs

		Annual administration cost*			
Product Name	Administration instructions	yer 4 hours; 5 infusions fusions subsequent years of 300 mg given over 150 (4.35 infusions per year) infusion of 300 mg given ninutes (2 infusions year 1) 2+: For each cycle, it is y to prepare two infusion usions of bag 1 and bag 2 r 240 minutes (2 infusions .17 infusions subsequent years)	Subsequent years		
Alemtuzumab	Infusion over 4 hours; 5 infusions year 1, 3 infusions subsequent years	\$634	\$380		
Ocrelizumab (PPMS)	Infusion of 300 mg given over 150 minutes (4.35 infusions per year)	\$427	\$427		
Ocrelizumab (RRMS)	Dose 1: infusion of 300 mg given over 150 minutes (2 infusions year 1) Dose 2+: For each cycle, it is necessary to prepare two infusion bags. Infusions of bag 1 and bag 2 given over 240 minutes (2 infusions year 1, 2.17 infusions subsequent years)	\$450	\$275		
Natalizumab	Infusion over 1 hour, 13.04 infusions per year	\$910	\$910		

Table E2. Lab and utilization costs and sources

Category	Cost*	Variable name	Source
Infusion cost (1st hour), CPT 96365	\$70		Source: physician fee schedule 2016 ¹⁵⁸
Infusion cost/hr (2+ hours), CPT	\$19		Source: physician fee schedule 2016 ¹⁵⁸
96366			
Complete blood count, CPT 85025	\$14	c_blood	Source: lab fee schedule 2016 ¹⁵⁹
Serum Creatinine, CPT 80053	\$19	c_creatinine	Source: lab fee schedule 2016 ¹⁵⁹
Urinalysis, CPT 81000	\$6	c_urine	Source: lab fee schedule 2016 ¹⁵⁹
Thyroid, CPT 84436+84479	\$25	c_thyroid	Source: lab fee schedule 2016 ¹⁵⁹
Liver, CPT 80076	\$15	c_liver	Source: lab fee schedule 2016 ¹⁵⁹
MRI, CPT 70543	\$495	c_MRI	Source: physician fee schedule 2016 ¹⁵⁸
ECG, CPT 93000	\$17	c_ecg	Source: physician fee schedule 2016 ¹⁵⁸
ALT, CPT 84460	\$10	c_ALT	Source: lab fee schedule 2016 ¹⁵⁹
CD4 lymphocyte, CPT 86360	\$87	c_cd4	Source: lab fee schedule 2016 ¹⁵⁹
PML, ICD diagnosis code 046.3	\$23,445		HCUP costs, 2012 data, accessed on July 6,
			2015 by AbbVie, adjusted to 2016 USD
			using multiplier 1.0363629 160
Hospital stay for disorders of the	\$4,477		Source: physician fee schedule 2016 ¹⁵⁸
biliary without complications, DRG 446			
Inpatient stay for depression, DRG	\$3,884		Source: physician fee schedule 2016 ¹⁵⁸
881	70,00		, , , , , , , , , , , , , , , , , , ,
Hospital stay for	\$5,687		Source: physician fee schedule 2016 ¹⁵⁸
influenza/pneumonia, DRG 194			
Serious infection, DRG 177	\$11,177		Source: physician fee schedule 2016 ¹⁵⁸
Cranial nerve disorder, DRG 073	\$7,829		Source: physician fee schedule 2016 ¹⁵⁸
Specialist visit, CPT 99215	\$112	c_office	Source: physician fee schedule 2016 ¹⁵⁸

^{*}varied \pm 20% in sensitivity analysis

Table E3. DMT Monitoring Costs

		Implemented as		Annual monito	ring cost [†]
Product Name	Monitoring instructions	(annual)	Year 1	Subsequent years	After discontinuation
Alemtuzumab	blood, urine, CD4 lymphocyte, and serum cr, (prior to treatment initiation and at monthly intervals thereafter), A test of thyroid function, such as thyroid stimulating hormone (TSH) level (prior to treatment initiation and every 3 months thereafter); must continue for 4 years after your last infusion	N/A	\$0*	\$0*	\$0*
Daclizumab	Test transaminase levels and total bilirubin monthly, follow monthly for 6 months after the last dose	12*c_liver annual 6*c_liver after discontinuation	\$180	\$180	\$90
Fingolimod	First Dose Monitoring: Observe all patients for bradycardia for at least 6 hours; monitor pulse and blood pressure hourly. Electrocardiograms (ECGs) prior to dosing and at end of observation period required. LFT every 6 months, CBC test every 2 months	2*c_liver +6*c_blood +2*c_ecg +c_office year 1 2*c_liver +6*c_blood subsequent	\$262	\$116	N/A
Glatiramer acetate 20 mg (Copaxone)	None	N/A	\$0	\$0	N/A
Glatiramer Acetate 20 mg (Glatopa)	None	N/A	\$0	\$0	N/A
Interferon β-1a 30 mcg (Avonex)	Blood cell counts and liver function tests are recommended at regular intervals (1, 3,and 6 months) and then periodically (2x/yr) thereafter	3*(c_blood+c_liver) year 1 2*(c_blood+c_liver) subsequent	\$88	\$59	N/A
Interferon β-1a 22/44 mcg (Rebif)	blood cell counts and liver function tests are recommended at regular	3*(c_blood+c_liver) year 1	\$88	\$59	N/A

		Implemented as		Annual monito	ring cost [†]
Product Name	Monitoring instructions	(annual)	Year 1	Subsequent years	After discontinuation
	intervals (1, 3, and 6 months) and then periodically (2x/yr) thereafter	2*(c_blood+c_liver) subsequent			
Interferon β-1b 250 mcg (Betaseron)	Blood cell counts and liver function tests are recommended at regular intervals (1, 3, and 6 months) and then periodically (2x/yr) thereafter	3*(c_blood+c_liver) year 1 2*(c_blood+c_liver) subsequent	\$88	\$59	N/A
Interferon β-1b 250 mcg (Extavia)	Blood cell counts and liver function tests are recommended at regular intervals (1, 3, and 6 months) and then periodically (2x/yr) thereafter	3*(c_blood+c_liver) year 1 2*(c_blood+c_liver) subsequent	\$88	\$59	N/A
Dimethyl Fumarate	Obtain a complete blood cell count (CBC) including lymphocyte count before initiation of therapy; CBC every 6 months	6*c_blood	\$29	\$29	N/A
Natalizumab	MRI every 6 months CBC+ LFT every month	2*c_MRI +12*c_liver	\$1,171	\$1,171	N/A
Ocrelizumab (RRMS)	None	N/A	\$0	\$0	N/A
Ocrelizumab (PPMS)	None	N/A	\$0	\$0	N/A
Peginterferon β-1a	CBC and liver function every 6 months	2*(c_blood+c_liver)	\$59	\$59	N/A
Teriflunomide	CBC and LFTs within 6 months prior to starting teriflunomide. ALT level (not a full LFT panel) monthly for 6 months after starting therapy.	c_blood +c_liver +6* c_ALT year 1	\$88	\$0	N/A

Table E4. Rates of SAEs and Total Weighted Costs and Utilities per DMT.

							Ra	te of	severe	AEs						
Severe AE	IFN β-1a 30mcg	IFN β-1b 250mcg	IFN β-1b 250mcg	GA 20 mg (Cop)	GA 20 mg (Gla)	IFN β-1a 22 mcg	IFN β-1a 44 mcg [‡]	PEG	FIN	TER 7 mg	TER 14 mg [‡]	DMF	NAT	ALE	DAC	ocr
Lymphopenia*						0.01	0.01									
ALT increased*										0.01	0.01					
Cholelithiasis*						0.01	0.01									
Influenza*						0.01	0.01									
Serious infection*												0.01				
Trigeminal neuralgia*						0.01	0.01									
Depression*						0.01	0.01									
PML [†]													0.0003			
Total Cost	\$0	\$0	\$0	\$0	\$0	\$154	\$154	\$0	\$0	\$4	\$4	\$3	\$0	\$0	\$0	\$0
Total Disutility	0	0	0	0	0	0.01075	0.01075	0	0	0	0	0.00007	0.00012	0	0	0

Table E5. Treatment Effect Parameters

Treatment		visability Progression S and RRMS to SPMS)	Rate Ratio for Relapse Ra (for RRMS/SPMS)		
	Base Case	Range for SA	Base Case	Range for SA	
Alemtuzumab (Lemtrada)	0.42	0.25-0.68	0.28	0.22-0.35	
Daclizumab (Zinbryta)	0.54	0.36-0.78	0.46	0.38-0.58	
Dimethyl Fumarate (Tecfidera)	0.62	0.46-0.84	0.53	0.43-0.63	
Fingolimod (Gilenya)	0.68	0.51-0.9	0.46	0.39-0.55	
Glatiramer acetate 20 mg (Glatopa)	0.74	0.58-0.94	0.63	0.55-0.71	
Glatiramer acetate 20 mg (Copaxone)	0.74	0.58-0.94	0.63	0.55-0.71	
Interferon β-1a 30 mcg (Avonex)	0.79	0.63-1	0.83	0.74-0.94	
Interferon β-1a 22 mcg (Rebif)	0.81	0.52-1.23	0.7	0.55-0.85	
Interferon β-1a 44 mcg (Rebif)	0.73	0.52-0.99	0.64	0.54-0.73	
Interferon β-1b 250 mcg (Betaseron)	0.66	0.46-0.89	0.65	0.55-0.77	
Interferon β-1b 250 mcg (Extavia)	0.66	0.46-0.89	0.65	0.55-0.77	
Natalizumab (Tysabri)	0.56	0.37-0.84	0.31	0.25-0.4	
Ocrelizumab (Ocrevus) (RRMS)	0.47	0.28-0.76	0.35	0.27-0.44	
Ocrelizumab (Ocrevus) (PPMS)90	0.75	0.58-0.98	N/A		
Peginterferon β-1a (Plegridy)	0.63	0.37-1.02	0.63	0.47-0.86	
Teriflunomide 7 mg (Aubagio)	0.86	0.63-1.14	0.77	0.67-0.93	
Teriflunomide 14mg (Aubagio)	0.72	0.52-0.97	0.67	0.56-0.79	

Table E6. EDSS Distribution of Populations of RRMS and PPMS Patients Entering the Model

								RRMS					PPMS
EDSS State		CONF (r				EFINE ^s	98	OPERA I & II ¹¹⁸ (n)	TOWER & TEMSO ¹¹⁹ (% of n)	CARE II ¹²⁰ (% of n)	то	TAL	ORATORIO ¹¹⁸ trial
0	13	15	15	18	21	29	24	51	5%	3%	280	4.4%	0.1%
1	78	85	84	77	105	109	104	312	20%	21%	1385	21.8%	0.3%
2	11	94	94	96	112	116	146	504	30%	28%	1805	28.4%	26.5%
3	98	105	99	99	97	82	85	389	21%	25%	1540	24.3%	27.3%
4	50	47	42	46	56	56	42	244	17%	16%	940	14.8%	15.7%
5	13	12	11	14	16	16	14	145	7%	7%	396	6.2%	29.9%
6								10			10	0.2%	0.1%
7												0%	0.0%
8												0%	0.0%
9												0%	0.1%
Total n	263	358	345	350	407	408	415	1655	1493	666	6355		

Table E7. Natural History ARR by EDSS States, Base Case and Sensitivity Analysis Values

	Relapse Ra	te, RRMS	Relapse R	ate, SPMS	Relapse	Scenari	o SA ¹¹⁷ *	Scenar	io SA ¹³⁸
EDSS State	Base case ^{117,124} **	Range for One-Way SA	Base case ^{117,124} †	Range for One-Way SA	Rate, PPMS	Relapse Rate, RRMS	Relapse Rate, SPMS	Relapse Rate, RRMS	Relapse Rate, SPMS
0	0.71	0.57-0.85				1.26		0.261	
1	0.73	0.58-0.88	0.00	0.00-0.10	0	1.32	0	0.237	0
2	0.68	0.54-0.82	0.47	0.38-0.56	0	1.32	0.91	0.46	0.315
3	0.72	0.58-0.86	0.88	0.70-1.06	0	1.35	1.64	0.495	0.602
4	0.71	0.57-0.85	0.55	0.44-0.66	0	1.36	1.05	0.67	0.515
5	0.59	0.47-0.71	0.52	0.42-0.62	0	1.43	1.27	0.181	0.16
6	0.49	0.39-0.59	0.45	0.36-0.54	0	1.18	1.1	0.15	0.139
7	0.51	0.41-0.61	0.34	0.27-0.41	0	1.23	0.82	0.156	0.104
8	0.51	0.41-0.61	0.34	0.27-0.41	0	1.23	0.82	0.156	0.104
9	0.51	0.41-0.61	0.34	0.27-0.41	0	1.23	0.82	0.156	0.104

^{*} Rates based on observational data

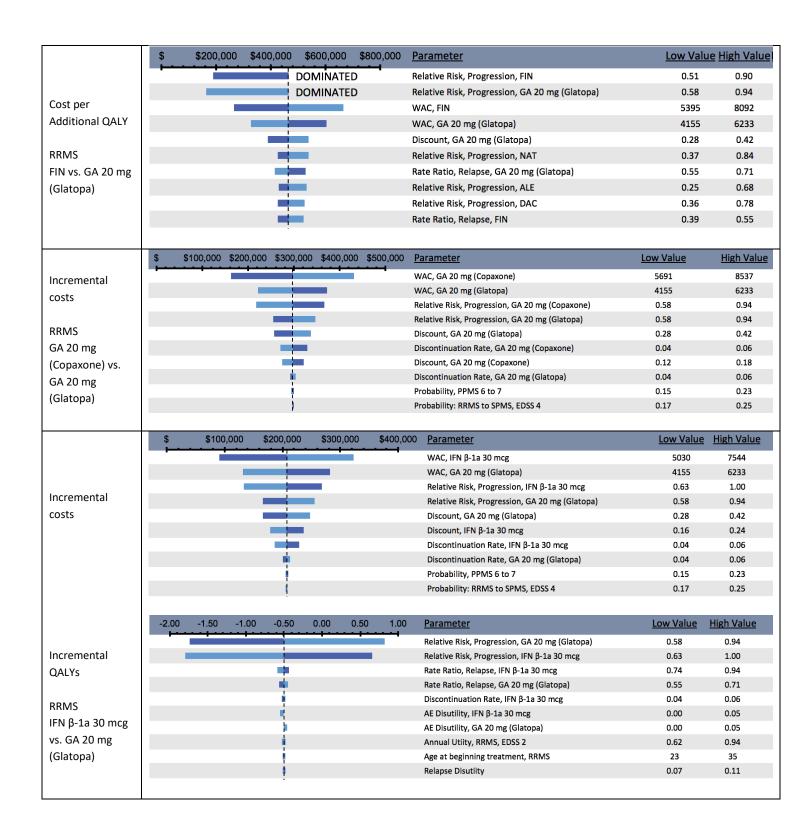
[†] Rates based on trial data

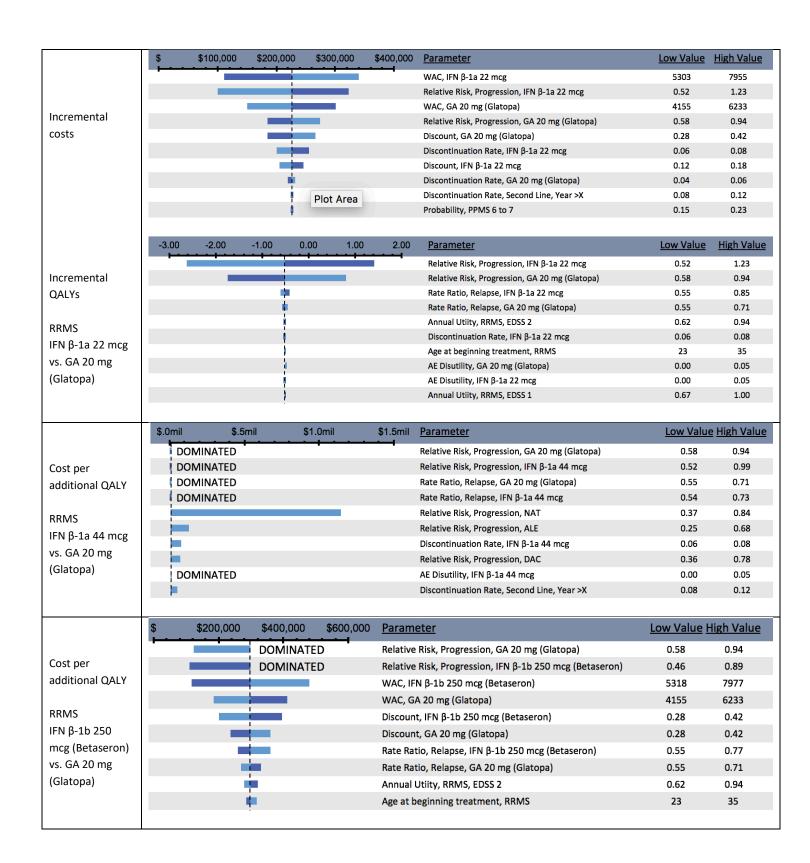
Table E8. Annual Probability of Moving Between EDSS States for Patients with Relapsing-Remitting Multiple Sclerosis

					EDSS S	tate at En	d of Year³	8,86,98,117			
		0	1	2	3	4	5	6	7	8	9
	0	0.311	0.289	0.312	0.07	0.016	0.001	0	0	0	0
	1	0.178	0.231	0.419	0.127	0.039	0.004	0.001	0	0	0
	2	0.06	0.13	0.493	0.215	0.088	0.011	0.002	0	0	0
EDSS	3	0.019	0.055	0.299	0.322	0.241	0.044	0.013	0.003	0.004	0
State at	4	0.005	0.017	0.127	0.251	0.411	0.121	0.048	0.014	0.007	0
Start of	5	0.001	0.004	0.033	0.096	0.252	0.295	0.211	0.085	0.023	0
Year	6	0	0.001	0.009	0.034	0.123	0.257	0.329	0.19	0.056	0.001
	7	0	0	0.003	0.013	0.057	0.169	0.309	0.257	0.189	0.004
	8	0	0	0	0	0	0	0	0	0.995	0.005
	9	0	0	0	0	0	0	0	0	0	1

Table E9. Annual Probability of Conversion from Relapsing-Remitting Multiple Sclerosis to Secondary Progressive Multiple Sclerosis, by EDSS State

Initial RRMS EDSS State	Probability of transitioning to SPMS ^{38,117}	Range for SA
0	0	0-0.003
1	0.003	0.002-0.004
2	0.032	0.026-0.038
3	0.117	0.094-0.140
4	0.210	0.168-0.252
5	0.299	0.239-0.359
6	0.237	0.190-0.284
7	0.254	0.203-0.305
8	0.153	0.122-0.184
9*	1.000	0.900-1.000


^{*}In a cycle when a transition from RRMS to SPMS occurs we assumed a 1 level increase in EDSS, except in the case of RRMS EDSS 9, where transition was directly to SPMS 9.


Table E10. Annual Probability of Moving Between EDSS States for Patients with Primary Progressive or Secondary Progressive Multiple Sclerosis

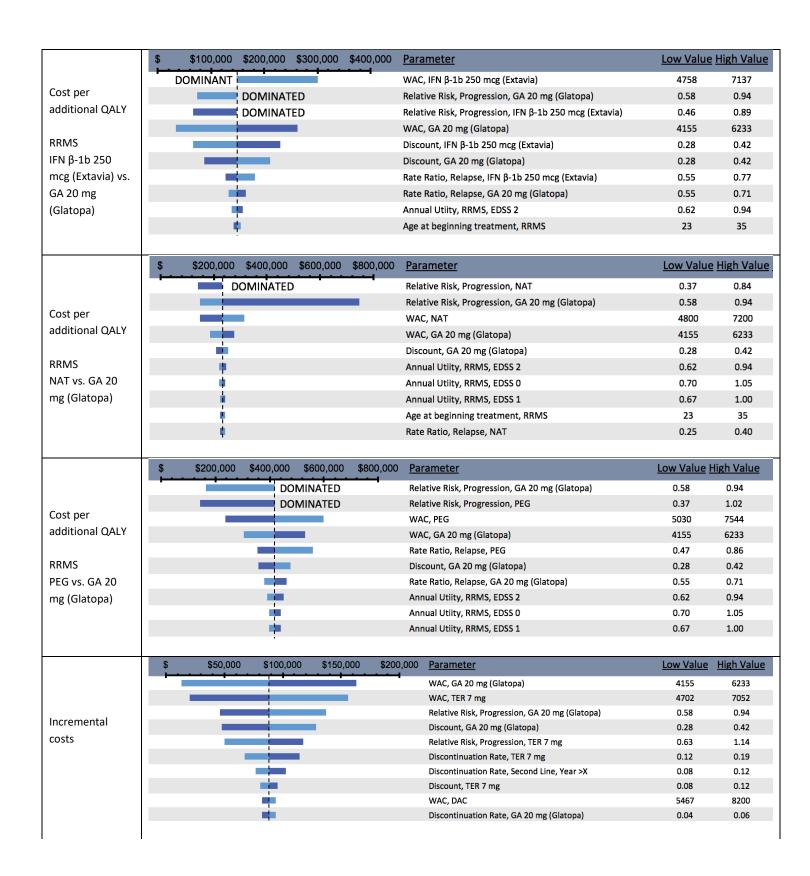

				EDS	S State at E	nd of Year ^{38,}	117			
		1	2	3	4	5	6	7	8	9
	1	0.769	0.154	0.077	0	0	0	0	0	0
	2	0	0.636	0.271	0.062	0.023	0.008	0	0	0
EDSS	3	0	0	0.629	0.253	0.077	0.033	0.003	0.005	0
State	4	0	0	0	0.485	0.35	0.139	0.007	0.018	0
at Start	5	0	0	0	0	0.633	0.317	0.022	0.026	0.002
of	6	0	0	0	0	0	0.763	0.19	0.045	0.002
Year	7	0	0	0	0	0	0	0.805	0.189	0.006
	8	0	0	0	0	0	0	0	0.926	0.074
	9	0	0	0	0	0	0	0	0	1

Table E11. Results of One-way Sensitivity Analyses

	\$0	\$200,00	0 \$400,00	00 \$60	0,000 <u>Parameter</u>	Low Valu	<u>ıe High Value</u>
			DOMINATED		Relative Risk, Progression, DAC	0.36	0.78
					Relative Risk, Progression, GA 20 mg (Glatopa)	0.58	0.94
Cost per					WAC, DAC	5467	8200
additional QALY			■ Result t	from low input val	ue WAC, GA 20 mg (Glatopa)	4155	6233
				from high input va	Di CA 30 (Cl-+)	0.28	0.42
RRMS			•		Annual Utiity, RRMS, EDSS 2	0.62	0.94
DAC vs. GA 20			•		Rate Ratio, Relapse, DAC	0.38	0.58
mg (Glatopa)			.		Annual Utiity, RRMS, EDSS 0	0.70	1.05
ing (Giatopa)			•		Age at beginning treatment, RRMS	23	35
			•		Annual Utiity, RRMS, EDSS 1	0.67	1.00
	-\$400,000	-\$300,000	-\$200,000 -\$1	00,000	\$ <u>Parameter</u>	<u>Low Value</u>	High Value
	-				WAC, GA 20 mg (Glatopa)	4155	6233
					Relative Risk, Progression, GA 20 mg (Glatopa)	0.58	0.94
					Discount, GA 20 mg (Glatopa)	0.28	0.42
Incremental Cost					WAC, ALE	16600	24900
micremental Cost					Discontinuation Rate, ALE	0.02	0.02
					Relative Risk, Progression, ALE	0.25	0.68
		•			Age at beginning treatment, RRMS	23	35
		in the			Discontinuation Rate, GA 20 mg (Glatopa)	0.04	0.06
					Direct Costs, EDSS 9	16882	25323
		•			Direct Costs, EDSS 8	15257	22886
	0.00	2.00	4.00 6	5.00 8.0	00 <u>Parameter</u>	<u>Low Value</u>	<u>High Value</u>
					Relative Risk, Progression, ALE	0.25	0.68
In an an an tal					Relative Risk, Progression, GA 20 mg (Glatopa)	0.58	0.94
Incremental					Age at beginning treatment, RRMS	23	35
QALYs			•		Annual Utiity, RRMS, EDSS 0	0.70	1.05
			•		Annual Utiity, RRMS, EDSS 2	0.62	0.94
RRMS			•		Discontinuation Rate, ALE	0.02	0.02
ALE vs. GA 20 mg			•		Annual Utiity, RRMS, EDSS 1	0.67	1.00
(Glatopa)			į.		Rate Ratio, Relapse, ALE	0.22	0.35
(į		Rate Ratio, Relapse, GA 20 mg (Glatopa)	0.55	0.71
			1		Annual Utiity, SPMS, EDSS 9	0.17	0.26
	\$0	\$200,000	\$400,000	\$600,000	<u>Parameter</u>	<u>Low Value</u>	High Value
			DOMINATED		Relative Risk, Progression, DMF	0.46	0.84
			DOMINATED		Relative Risk, Progression, GA 20 mg (Glatopa)	0.58	0.94
Cost per			20		WAC, DMF	5456	8184
additional QALY					WAC, GA 20 mg (Glatopa)	4155	6233
-					Discount, GA 20 mg (Glatopa)	0.28	0.42
RRMS							
DMF vs. GA 20					Relative Risk, Progression, NAT	0.37	0.84
		_			Relative Risk, Progression, ALE	0.25	0.68
mg (Glatopa)					Relative Risk, Progression, DAC	0.36	0.78
					Deletine Diele Deservacion CINI	0.51	0.90
					Relative Risk, Progression, FIN Rate Ratio, Relapse, GA 20 mg (Glatopa)	0.51	0.71

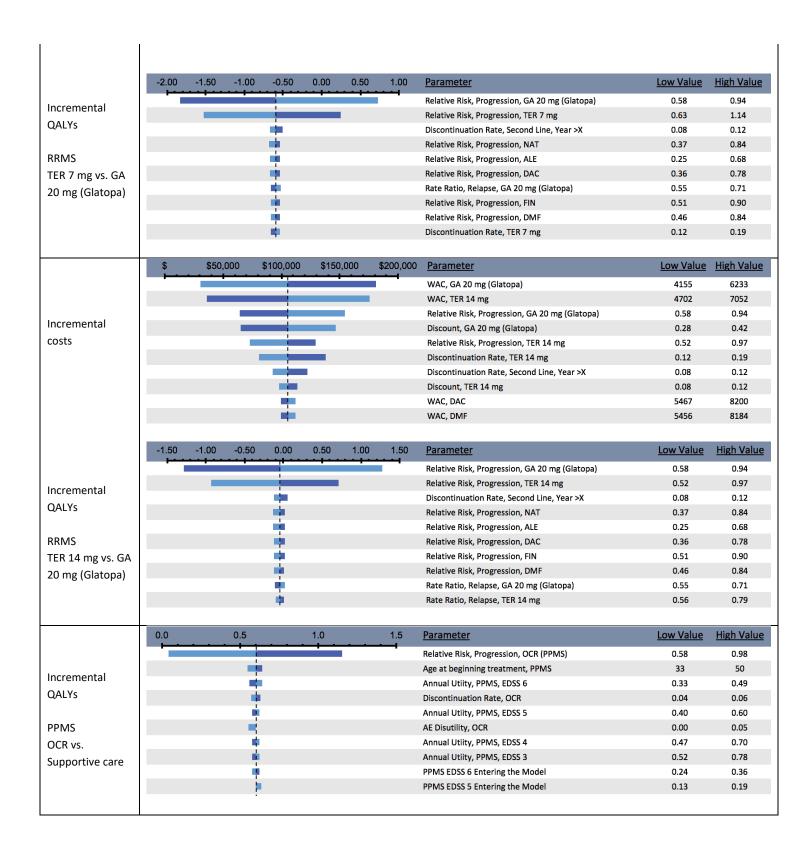


Table E12. Results of Probabilistic Sensitivity Analyses by DMT, RRMS

		Supportive Ca	ire			Alemtuzum	ab			Daclizumab		
	Mean	Credi	ble	Range	Mean	Cred	lible	Range	Mean	Credib	le	Range
Total Costs	\$331,612	\$293,303	-	\$374,472	\$570,192	\$511,992	-	\$628,036	\$1,478,343	\$1,203,815	-	\$1,767,203
Drug Costs	\$0	\$0	-	\$0	\$322,844	\$271,226	-	\$377,618	\$1,207,639	\$916,527	-	\$1,512,026
Healthcare Costs	\$331,612	\$293,303	-	\$374,472	\$247,347	\$207,126	-	\$293,413	\$270,703	\$231,233	-	\$315,289
Adverse Event Costs	\$0	\$0	-	\$0	\$1	\$0	-	\$4	\$1	\$0	-	\$4
Total QALYs	5.7	4.96	-	6.40	12.6	9.34	-	15.36	10.9	8.03	-	13.45
Relapses	16.2	14.47	-	18.22	10.8	8.97	-	12.84	13.0	10.77	-	15.47
Life-Years	21.3	19.83	-	22.83	23.1	21.41	-	24.53	22.6	21.08	-	24.08
	I	Dimethyl fuma	rate	9		Fingolimo	d		Glatiran	ner acetate 20 m	g (Glatopa)
	Mean	Credi	ble	Range	Mean	Cred	dible	Range	Mean	Credib	le	Range
Total Costs	\$1,025,604	\$911,918	-	\$1,143,522	\$1,116,147	\$968,860	-	\$1,266,901	\$862,626	\$757,697	-	\$972,427
Drug Costs	\$733,961	\$622,227	-	\$850,324	\$824,385	\$674,731	-	\$978,908	\$563,807	\$461,994	-	\$673,549
Healthcare Costs	\$291,637	\$257,744	-	\$328,865	\$291,760	\$256,639	-	\$329,373	\$298,818	\$263,104	-	\$337,904
Adverse Event Costs	\$6	\$0	-	\$38	\$3	\$0	-	\$16	\$1	\$0	-	\$9
Total QALYs	9.0	7.68	-	10.27	9.0	7.45	-	10.50	8.5	6.98	-	10.05
Relapses	14.2	12.34	-	16.15	13.4	11.59	-	15.43	14.3	12.36	-	16.41
Life-Years	22.1	20.67	-	23.47	22.1	20.64	-	23.48	22.0	20.55	-	23.41
	Glatirame	r acetate 20 m	g (C	Copaxone)	Interfe	ron β-1a 30 m	cg (A	(vonex)	Interf	eron β-1a 22 mc	g (Rebif)
	Mean	Credi	ble	Range	Mean	Cred	lible	Range	Mean	Credib	le	Range
Total Costs	\$1,178,693	\$1,012,734	-	\$1,356,044	\$1,081,754	\$937,398	-	\$1,236,071	\$1,089,559	\$918,524	-	\$1,261,469
Drug Costs	\$883,168	\$717,790	-	\$1,058,732	\$778,245	\$635,275	-	\$932,445	\$785,199	\$607,711	-	\$968,504
Healthcare Costs	\$295,523	\$259,709	-	\$334,028	\$303,508	\$268,119	-	\$343,270	\$304,347	\$264,415	-	\$349,023
Adverse Event Costs	\$1	\$0	-	\$9	\$1	\$0	-	\$9	\$12	\$0	-	\$42
Total QALYs	8.8	7.19	-	10.31	8.2	6.69	-	9.66	8.0	5.74	-	10.12
Relapses	14.3	12.41	-	16.40	15.6	13.58	-	17.81	14.6	12.36	-	17.03
Life-Years	22.1	20.61	-	23.46	21.9	20.47	-	23.37	21.9	20.33	-	23.34

	Interf	eron β-1a 44 m	ncg	(Rebif)	Interfer	on β-1b 250 n	ncg (Be	etaseron)	Interf	eron β-1b 2525	0 mcgE	xtavia)
	Mean	Credi	ble	Range	Mean	Cre	dible	Range	Mean	Cre	edible R	lange
Total Costs	\$1,120,570	\$968,249	-	\$1,284,947	\$1,060,481	\$902,181	-	\$1,232,479	\$965,643	\$824,449	-	\$1,115,306
Orug Costs	\$822,888	\$668,107	-	\$987,650	\$769,592	\$598,878	-	\$947,569	\$675,397	\$529,451	-	\$829,808
Healthcare Costs	\$297,670	\$260,842	-	\$336,704	\$290,888	\$254,270	-	\$333,288	\$290,244	\$252,617	-	\$330,634
Adverse Event Costs	\$12	\$0	-	\$43	\$1	\$0	-	\$7	\$1	\$0	-	\$7
Total QALYs	8.6	6.85	-	10.25	9.2	7.10	-	11.23	9.3	7.25	-	11.25
Relapses	14.4	12.46	-	16.56	14.8	12.59	-	17.21	14.8	12.64	-	17.12
Life-Years	22.0	20.54	-	23.43	22.2	20.72	-	23.63	22.2	20.72	-	23.62
		Natalizuma	b			Ocrelizun	nab			Peginterfero	n β-1a	
	Mean	Credi	ble	Range	Mean	Cre	edible	Range	Mean	Cre	edible R	lange
Total Costs	\$1,271,542	\$1,084,471	-	\$1,477,417	-	-	-	-	\$1,140,605	\$969,116	-	\$1,313,386
Drug Costs	\$996,782	\$796,416	-	\$1,209,305	-	-	-	-	\$849,060	\$668,428	-	\$1,033,076
Healthcare Costs	\$274,758	\$238,818	-	\$316,482	-	-	-	-	\$291,543	\$252,686	-	\$335,886
Adverse Event Costs	\$2	\$0	-	\$10	-	-	-	-	\$2	\$0	-	\$13
Total QALYs	10.4	8.13	-	12.39	11.0	8.42	-	13.29	9.1	6.69	-	11.26
Relapses	12.2	10.39	-	14.22	12.6	10.62	-	14.84	14.7	12.34	-	17.32
Life-Years	22.4	20.93	-	23.80	22.6	21.10	-	24.01				
		Teriflunomide '	7 m	g		Teriflunomide	14 m	g				
	Mean	Credi	ble	Range	Mean	Cre	dible	Range				
Total Costs	\$953,044	\$858,231	-	\$1,055,325	\$967,606	\$869,637	-	\$1,073,121				
Drug Costs	\$647,528	\$555,569	-	\$748,033	\$667,728	\$574,206	-	\$771,826				
Healthcare Costs	\$305,511	\$269,313	-	\$345,667	\$299,875	\$264,698	-	\$337,925				
Adverse Event Costs	\$4	\$0	-	\$26	\$4	\$0	-	\$26				

7.09

12.81

20.49

9.63

16.68

23.35

7.9

14.8

21.8

6.57

12.92

20.38

- 9.15

- 16.75

- 23.24

8.4

14.7

21.9

Total QALYs

Relapses

Life-Years

Table E13. Results of Probabilistic Sensitivity Analyses by DMT, PPMS

	S	upportive	Car	·e	0	crelizu	mab	
	Mean	Credik	ole	Range	Mean	Credi	ible Ran	ge
Total Costs	\$266,216	\$246,927	-	\$265,330	-	-	-	-
Drug Costs	\$0	\$0	-	\$0	-	-	-	-
Healthcare Costs	\$266,216	\$246,927	-	\$265,330	-	-	-	-
Adverse Event Costs	\$0	\$0	-	\$0	-	-	-	-
Total QALYs	2.7	2.58	-	2.73	3.0	3.5	3.23	-
Life-Years	15.7	14.80	-	15.67	16.8	16.3	15.39	-

Table E14. Results of Probabilistic Sensitivity Analyses, Pairwise Results Compared to Supportive Care, RRMS

		Alemtuzuma	b			Daclizuma	b			Dimethyl fuma	arat	:e
	Mean	Cred	ible	Range	Mean	Cred	lible	Range	Mean	Cred	ible	Range
\$ per QALY	\$34,434	\$21,656	-	\$68,392	\$221,503	\$156,615	-	\$394,683	\$209,113	\$160,700	-	\$291,994
\$ per Relapse	\$43,506	\$31,253	-	\$61,846	\$348,436	\$206,819	-	\$892,146	\$335,072	\$231,633	-	\$559,063
\$ per Life-Year	\$139,394	\$85,274	-	\$314,115	\$900,052	\$594,813	-	\$1,882,424	\$941,650	\$674,306	-	\$1,449,079
Total Costs	\$237,064	\$266,536	-	\$288,305	\$1,144,838	\$981,125	-	\$1,423,909	\$694,972	\$837,803	-	\$806,606
Drug Costs	\$321,094	\$266,341	-	\$329,968	\$1,206,432	\$917,460	-	\$1,089,214	\$735,037	\$624,750	-	\$671,998
Healthcare Costs	-\$84,030	-\$123,835	-	-\$85,026	-\$61,594	-\$95,657	-	-\$62,616	-\$40,071	-\$54,129	-	-\$40,108
Adverse Event Costs	\$1	\$0	-	\$1	\$1	\$0	-	\$1	\$6	\$0	-	\$9
Total QALYs	6.89	3.62	-	7.41	5.22	2.50	-	5.77	3.31	2.26	-	3.29
Relapses	-5.50	-6.65	-	-6.61	-3.31	-4.74	-	-4.46	-2.07	-2.83	-	-1.76
Life-Years	1.70	0.79	-	1.06	1.28	0.51	-	1.93	0.73	0.46	-	0.88
		Fingolimod			Glatiran	ner acetate 20	mg	(Glatopa)	Glatiram	er acetate 20 n	ng (Copaxone)
	Mean	Cred	ible	Range	Mean	Cred	lible	Range	Mean	Cred	lible	Range
\$ per QALY	\$237,556	\$173,290	-	\$376,113	\$190,027	\$131,787	-	\$333,569	\$274,371	\$197,211	-	\$444,971
\$ per Relapse	\$278,057	\$194,466	-	\$428,598	\$266,480	\$165,979	-	\$611,217	\$443,583	\$271,601	-	\$992,676
\$ per Life-Year	\$1,069,719	\$730,043	-	\$1,910,766	\$830,984	\$543,389	-	\$1,720,354	\$1,184,473	\$786,832	-	\$2,194,077
Total Costs	\$786,758	\$841,013	-	\$933,630	\$533,852	\$527,572	-	\$636,306	\$845,450	\$975,394	-	\$1,000,335
Drug Costs	\$826,668	\$682,617	-	\$748,470	\$566,967	\$468,239	-	\$549,434	\$881,613	\$702,657	-	\$837,916
Healthcare Costs	-\$39,912	-\$57,233	-	-\$41,594	-\$33,116	-\$50,080	-	-\$33,660	-\$36,164	-\$52,885	-	-\$36,889
Adverse Event Costs	\$3	\$0	-	\$4	\$1	\$0	-	\$2	\$1	\$0	-	\$2
Total QALYs	3.30	1.89	-	3.27	2.81	1.57	-	3.65	3.09	1.74	-	2.37
Relapses	-2.82	-3.64	-	-3.15	-1.99	-2.90	-	-1.78	-1.88	-2.76	-	-2.28
Life-Years	0.73	0.38		0.82	0.64	0.30	_	0.71	0.71	0.37	_	0.78

	Interf	eron β-1a 30	mcg (A	vonex)	Inte	rferon β-1a 2	2 mcg (Rebif)	Interfe	eron β-1a 44 n	ncg	(Rebif)
	Mean	Cre	edible I	Range	Mean	Cr	edible	Range	Mean	Cred	lible	Range
\$ per QALY	\$300,541	\$207,679	-	\$561,161	\$329,755	\$192,723	-	\$3,170,652	\$274,479	\$189,372	-	\$547,778
\$ per Relapse	\$1,158,693	\$403,031	-	Dominated	\$450,367	\$210,873	-	\$13,965,466	\$435,417	\$250,170	-	\$1,197,536
\$ per Life-Year	\$1,252,852	\$813,057	-	\$2,604,907	\$1,453,819	\$782,885	-	Dominated	\$1,196,725	\$767,020	-	\$2,783,858
Total Costs	\$744,661	\$806,393	-	\$892,522	\$752,001	\$897,062	-	\$916,668	\$790,137	\$779,032	-	\$947,046
Drug Costs	\$772,346	\$624,852	-	\$864,021	\$778,583	\$598,763	-	\$832,727	\$824,153	\$666,642	-	\$844,797
Healthcare Costs	-\$27,687	-\$45,152	-	-\$17,896	-\$26,594	-\$51,054	-	-\$28,273	-\$34,028	-\$53,660	-	-\$38,677
Adverse Event Costs	\$1	\$0	-	\$2	\$12	\$0	-	\$11	\$12	\$0	-	\$3
Total QALYs	2.44	1.25	-	1.54	2.23	0.05	-	2.55	2.87	1.37	-	2.86
Relapses	-0.68	-1.70	-	-0.62	-1.69	-3.09	-	-1.03	-1.81	-2.77	-	-2.87
Life-Years	0.58	0.26	-	0.76	0.50	-0.05	-	0.29	0.66	0.26	-	0.89
	Interfer	on β-1b 250 n	ncg (Be	taseron)	Interf	eron β-1b 250	O mcg (I	Extavia)		Natalizuma	ıb	
	Mean	Cre	edible I	Range	Mean	Cr	edible	Range	Mean	Cred	lible	Range
\$ per QALY	\$206,465	\$141,129	-	\$415,755	\$176,725	\$121,818	-	\$325,965	\$201,074	\$147,056	-	\$318,443
\$ per Relapse	\$499,961	\$225,035	-	Dominated	\$434,114	\$196,314	-	Dominated	\$234,994	\$167,060	-	\$347,927
\$ per Life-Year	\$859,491	\$550,350	-	\$2,027,154	\$734,648	\$477,167	-	\$1,572,722	\$877,476	\$603,672	-	\$1,639,804
Total Costs	\$731,109	\$787,238	-	\$896,348	\$632,339	\$651,538	-	\$776,819	\$937,647	\$972,423	-	\$1,133,090
Drug Costs	\$772,074	\$604,987	-	\$589,624	\$673,377	\$534,834	-	\$836,013	\$994,418	\$801,908	-	\$865,392
Healthcare Costs	-\$40,967	-\$66,121	-	-\$56,154	-\$41,040	-\$63,591	-	-\$26,576	-\$56,772	-\$82,754	-	-\$45,247
Adverse Event Costs	\$1	\$0	-	\$1	\$1	\$0	-	\$2	\$2	\$0	-	\$2
Total QALYs	3.54	1.54	-	2.17	3.54	1.72	-	4.36	4.65	2.59	-	3.20
Relapses	-1.45	-2.83	-	-1.29	-1.46	-2.84	-	-0.94	-4.00	-5.00	-	-3.58
Life-Years	0.85	0.30	-	1.03	0.85	0.36	-	1.34	1.06	0.49	-	0.80

		Ocrelizur	nab			Peginterferon β	-1a		Teriflunomide 7 mg					
	Mean	Cred	ible	Range	Mean	Credi	ible	Range	Mean	Cred	redible Range			
\$ per QALY	-	-	-	-	\$237,646	\$158,650	-	\$602,498	\$282,842	\$200,168	-	\$500,850		
\$ per Relapse	-	-	-	-	\$528,078	\$228,144	-	Dominated	\$419,023	\$262,617	-	\$926,140		
\$ per Life-Year	-	-	-	-	\$1,021,214	\$650,349	-	\$3,230,017	\$1,292,546	\$847,149	-	\$2,695,372		
Total Costs	-			\$808,863	\$867,873	-	\$981,681	\$621,864	\$690,180	-	\$716,840			
Drug Costs	-	-	-	-	\$848,801	\$672,379	-	\$740,114	\$647,943	\$554,015	-	\$598,024		
Healthcare Costs	-	-	-	-	-\$39,940	-\$64,305	-	-\$32,109	-\$26,083	-\$38,825	-	-\$21,255		
Adverse Event Costs	-	-	-	-	\$2	\$0	-	\$3	\$4	\$0	-	\$7		
Total QALYs	5.24	2.76	-	2.56	3.38	1.17	-	3.15	2.19	1.23	-	2.67		
Relapses	-3.66	-4.80	-	-4.33	-1.50	-3.16	-	-2.08	-1.49	-2.23	-	-2.23		
Life-Years	1.23	0.58	-	1.28	0.78	0.22	-	1.00	0.48	0.22	-	0.50		
	Te	riflunomid	Teriflunomide 14 mg											

	Ter	riflunomide	1 4	mg
	Mean	Cred	ible	Range
\$ per QALY	\$238,534	\$177,683	-	\$371,588
\$ per Relapse	\$399,425	\$260,425	-	\$790,230
\$ per Life-Year	\$1,078,994	\$755,085	-	\$1,886,675
Total Costs	\$636,376	\$644,331	-	\$737,914
Drug Costs	\$668,342	\$571,106	-	\$613,288
Healthcare Costs	-\$31,970	-\$45,075	-	-\$33,347
Adverse Event Costs	\$4	\$0	-	\$6
Total QALYs	2.68	1.74	-	3.18
Relapses	-1.59	-2.26	-	-1.51
Life-Years	0.59	0.34	-	0.57

Table E15. Results of Probabilistic Sensitivity Analyses, Pairwise Results Compared to Supportive Care, PPMS

	Ocrelizumab Mean Credible Range									
	Mean	Credil	ble I	Range						
Total QALYs	0.76	0.19	-	0.81						
Life-Years	0.62	0.17	-	0.37						

Table E16. Results of Probabilistic Sensitivity Analyses, Pairwise Results Compared to Glatiramer Acetate 20mg (Glatopa), RRMS

		Alemtuzuma	ıb			Daclizuma	b			Dimethyl fun	narate	
	Mean	Cred	ible	Range	Mean	Cred	ible	Range	Mean	Cre	edible F	Range
Total Costs	Dominant	Dominant	-	Dominant	\$258,419	\$128,763	-	Dominated	\$310,827	\$66,630	-	Dominated
\$ per Life-Year	Dominant	Dominant	-	Dominant	\$474,217	\$148,280	-	Dominated	\$2,076,825	\$57,559	-	Dominated
\$ per Relapse	Dominant	Dominant	-	Dominant	\$969,552	\$464,523	-	Dominated	\$1,663,418	\$289,541	-	Dominated
Total Costs	-\$296,788	-\$406,104	-	-\$191,691	\$610,986	\$325,908	-	\$894,904	\$161,120	\$34,451	-	\$300,651
Drug Costs	-\$245,873	-\$358,507	-	-\$138,161	\$639,465	\$339,192	-	\$939,480	\$168,070	\$30,965	-	\$320,577
Healthcare Costs	-\$50,914	-\$88,340	-	-\$10,594	-\$28,478	-\$62,964	-	\$3,107	-\$6,955	-\$25,376	-	\$9,014
Adverse Event Costs	-\$1	-\$5	-	\$0	-\$1	-\$5	-	\$0	\$5	\$0	-	\$30
Total QALYs	4.08	0.72	-	6.97	2.41	-0.39	-	5.09	0.50	-0.87	-	2.11
Relapses	-3.51	-4.91	-	-2.12	-1.32	-2.93	-	0.54	-0.08	-1.19	-	1.00
Life-Years	1.06	0.11	-	1.84	0.64	-0.14	-	1.40	0.09	-0.27	-	0.50
		Fingolimod			Glatirame	er acetate 20 n	ng (Copaxone)	Interf	eron β-1a 30 r	ncg (A	/onex)
	Mean	Cred	ible	Range	Mean	Credible Range			Mean	Cre	edible F	Range
Total Costs	\$498,941	\$114,321	-	Dominated	-	-	-	-	Dominated	\$168,491	-	Dominated
\$ per Life-Year	\$305,894	\$67,957	-	Dominated	-	-	-	-	Dominated	\$3,064,272	-	Dominated
\$ per Relapse	\$2,686,044	\$482,839	-	Dominated	-	-	-	-	Dominated	\$574,457	-	Dominated
Total Costs	\$252,906	\$91,095	-	\$417,588	\$311,598	\$127,543	-	\$500,944	\$210,809	\$51,825	-	\$375,735
Drug Costs	\$259,701	\$93,151	-	\$429,576	\$314,646	\$120,926	-	\$513,480	\$205,379	\$33,359	-	\$378,642
Healthcare Costs	-\$6,796	-\$27,063	-	\$13,564	-\$3,048	-\$22,529	-	\$16,251	\$5,429	-\$14,207	-	\$24,128
Adverse Event Costs	\$1	\$0	-	\$7	\$0	-\$1	-	\$1	\$0	-\$1	-	\$1
Total QALYs	0.49	-1.24	-	2.26	-	-	-	-	-0.37	-2.08	-	1.40
									1.31	0.03	-	2.77
Relapses	-0.83	-1.98	-	0.30	-	-	-	•	1.31	0.05	-	2.77

	Inter	feron β-1a 22	mcg (I	Rebif)	Interferon	β-1a 44 mcg (Reb	oif)	Interferon β-1b 250 mcg (Betaseron)			
	Mean	Cre	dible F	tange	Mean	Cred	ible	Range	Mean	Cre	dible	Range
Total Costs	Dominated	\$156,290	-	Dominated	\$3,225,415	\$141,905	-	Dominated	\$268,892	\$51,643	-	Dominated
\$ per Life-Year	Dominated	\$52,214	-	Dominated	Dominated	\$134,680	-	Dominated	Dominated	\$57,836	-	Dominated
\$ per Relapse	Dominated	\$602,494	-	Dominated	\$12,740,562	\$550,293	-	Dominated	\$946,648	\$190,381	-	Dominated
Total Costs	\$218,149	\$31,976	-	\$396,515	\$256,285	\$79,455	-	\$436,869	\$197,256	\$29,204	-	\$370,081
Drug Costs	\$211,617	\$6,462	-	\$410,291	\$257,187	\$59,924	-	\$447,023	\$205,108	\$22,840	-	\$396,068
Healthcare Costs	\$6,522	-\$20,265	-	\$34,054	-\$913	-\$22,233	-	\$21,967	-\$7,851	-\$34,996	-	\$18,855
Adverse Event Costs	\$10	\$0	-	\$39	\$10	\$0	-	\$38	\$0	-\$2	-	\$0
Total QALYs	-0.58	-3.17	-	1.79	0.06	-1.95	-	1.90	0.73	-1.72	-	3.06
Relapses	0.30	-1.50	-	2.19	0.18	-1.20	-	1.55	0.54	-1.16	-	2.29
Life-Years	-0.14	-0.82	-	0.47	0.02	-0.48	-	0.49	0.21	-0.43	-	0.82
	Interfe	ron β-1b 250	mcg (E	xtavia)	N	Natalizumab					nab	
	Mean	Cre	dible F	tange	Mean Credible Range			Range	Mean	Cre	dible	Range
Total Costs	\$129,866	Dominant	-	Dominated	\$217,492	\$101,235	-	Dominated	-	-	-	-
\$ per Life-Year	Dominated	Dominant	-	Dominated	\$203,734	\$79,226	-	\$622,624	-	-	-	-
\$ per Relapse	\$459,850	Dominant	-	Dominated	\$946,223	\$411,338	-	Dominated	-	-	-	-
Total Costs	\$98,486	-\$59,270	-	\$269,231	\$403,795	\$203,342	-	\$612,684	-	-	-	-
Drug Costs	\$106,410	-\$68,874	-	\$289,625	\$427,451	\$210,916	-	\$651,773	-	-	-	-
Healthcare Costs	-\$7,924	-\$32,930	-	\$16,479	-\$23,656	-\$50,595	-	\$2,610	-	-	-	-
Adverse Event Costs	\$0	-\$2	-	\$0	\$0	\$0	-	\$2	-	-	-	-
Total QALYs	0.73	-1.48	-	2.96	1.84	-0.51	-	3.96	2.43	-0.29	-	4.82
Relapses	0.53	-1.08	-	2.43	-2.01	-3.29	-	-0.74	-1.67	-3.10	-	-0.26
Life-Years	0.21	-0.37 - 0.81 0.42		0.42	-0.19	-	1.00	0.59	-0.13	-	1.22	

		Peginterferon (β-1a	1		Teriflunomide 7	mg		Teriflunomide 14 mg			
	Mean	Cred	Credible Range			Cred	lible	e Range	Mean	Credible Rar		Range
Total Costs	\$455,868	\$102,739	-	Dominated	Dominated	\$110,533	-	Dominated	Dominated	\$60,900	-	Dominated
\$ per Life-Year	Dominated	\$106,684	-	Dominated	Dominated	Dominant	-	Dominated	Dominated	\$6,890	-	Dominated
\$ per Relapse	\$1,814,846	\$399,647	-	Dominated	Dominated	\$445,992	-	Dominated	Dominated	\$266,789	-	Dominated
Total Costs	\$275,010	\$88,321	-	\$465,692	\$88,012	-\$35,463	-	\$220,046	\$102,524	-\$19,594	-	\$229,818
Drug Costs	\$281,834	\$70,484	-	\$489,043	\$80,976	-\$48,200	-	\$220,099	\$101,375	-\$27,632	-	\$234,317
Healthcare Costs	-\$6,824	-\$34,038	-	\$22,809	\$7,033	-\$10,984	-	\$23,872	\$1,146	-\$15,660	-	\$18,050
Adverse Event Costs	\$1	\$0	-	\$4	\$3	\$0	-	\$18	\$3	\$0	-	\$17
Total QALYs	0.57	-2.02	-	2.95	-0.62	-2.12	-	0.92	-0.13	-1.49	-	1.38
Relapses	0.49	-1.42	-	2.57	0.50	-0.68	-	1.61	0.40	-0.73	-	1.44
Life-Years	0.14	-0.52	-	0.79	-0.16	-0.54	-	0.23	-0.05	-0.43	-	0.34

Results of Scenario Analyses

For the first scenario, we used alternative untreated ARR rates by EDSS state that were higher than the base case rates (Table E17). Projected relapses were higher compared to the base case, as were total projected costs, while projected life-years did not change and projected QALYs decreased. Because of the decrease in QALYs, and because the costs of supportive care and generic glatiramer acetate 20 mg also increased, the costs per additional QALY, costs per additional life-year, and costs per relapse avoided compared to supportive care and generic glatiramer acetate 20 mg all decreased. The decreases in cost per relapse avoided were particularly large. For example, the cost per relapse avoided for natalizumab compared to supportive care and glatiramer acetate 20 mg went from \$228,597 and \$196,062 to \$99,144 and \$88,525, respectively. The exception to a decrease was the costs per additional QALY and costs per additional life-year for Interferon β -1a 44mcg, interferon β -1b 250 mcg (Betaseron), and interferon β -1b 250 mcg (Extavia) compared to generic glatiramer acetate 20 mg, which slightly increased.

In the second scenario, we used alternative untreated ARR rates by EDSS state that were lower than the base case rates (Table E18). This had the opposite effect, decreasing projected relapses and costs and increasing QALYs compared to the base case, which in turn increased the costs per additional QALY, costs per additional life-year, and costs per relapse avoided compared to supportive care. However, changes versus generic glatiramer acetate 20 mg were more variable, with some increases and some decreases depending on DMT.

In scenario three, we used results from the NMA including only studies with 12-week progression results (Table E19). This resulted in many quantitative changes in results. Of note, when compared to generic glatiramer acetate, interferon β -1b 250 mcg (Betaseron), teriflunomide 7/14 mg, and interferon β -1a 22/44 mcg went from dominated to increased costs, QALYS, and life-years.

In scenario four, we used results from the NMA including only studies with 24-week progression results (Table E20). Those DMTs without results did not have any trials with 24-week results. Results varied by DMT. Projected costs, relapses, life-years, QALYs, and costs per relapse avoided increased and costs per QALY and life-year decreased compared to the supportive care for three DMTs (interferon β -1a 30 mcg, interferon β -1b 250 mcg [Betaseron, Extavia]). Results were opposite for five DMTs (dimethyl fumarate, interferon β -1a 44 mcg, glatiramer acetate 20 mg [branded and generic], fingolimod, natalizumab, ocrelizumab, and alemtuzumab), while costs for alemtuzumab increased and health outcomes decreased. The cost per QALY compared to generic glatiramer acetate for interferon β -1b 250 mcg (Extavia and Betaseron) decreased to \$73,641 and \$126,975, respectively.

In scenario five, we included indirect costs (Table E21). This increased the projected costs for all DMTs and supportive care without changing health outcomes from the base case. This resulted in non-influential decreases from base case for all pairwise results.

In scenario six (Table E21), we removed the stopping rule for EDSS 7 and modeled all patients to continue DMTs beyond EDSS 7. This resulted in higher projected costs, fewer relapses, more life-years, and more QALYs compared to base case. The costs per QALYS and life-year increased and cost per relapse-avoided decreased compared to supportive care. Pairwise changes compared to generic glatiramer acetate were more varied, but costs per QALY all non-influentially decreased.

In scenario seven, used higher AE rates and related costs and utility decrements for all DMTs to demonstrate the effects of higher AE risk on the base case results (Table E22). This resulted in minimal increases in projected costs and insubstantial changes to pairwise results from base case.

Table E17. Scenario 1 Results: Higher Untreated ARR by EDSS States Data Source¹¹⁷ (Based on Trial Data)

					Compa	red to Supporti	ve Care	Comp	ared to GA 20 mg ((Glatopa)			
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided			
		Results for	RRMS		Pairwise Results for RRMS								
Supportive Care	\$366,300	35.9	21.4	4.1	-	-	-	-	-	-			
Teriflunomide 7mg	\$978,862	32.3	21.9	6.5	\$256,359	\$1,335,004	\$172,045	DOMINATED	DOMINATED	DOMINATED			
Interferon β-1a 30 mcg (Avonex)	\$1,099,174	33.7	22.0	6.5	\$304,173	\$1,404,730	\$334,633	DOMINATED	DOMINATED	DOMINATED			
Interferon β-1a 22 mcg (Rebif)	\$1,116,081	31.8	21.9	6.6	\$300,153	\$1,524,939	\$182,645	DOMINATED	DOMINATED	DOMINATED			
Teriflunomide 14mg	\$995,624	32.0	22.0	7.1	\$211,396	\$1,072,971	\$162,974	DOMINATED	DOMINATED	DOMINATED			
Glatiramer acetate 20 mg (Copaxone)	\$1,186,420	31.1	22.0	7.2	\$268,036	\$1,335,777	\$170,954	DOMINATED	DOMINATED	DOMINATED			
Glatiramer acetate 20 mg (Glatopa)	\$889,096	31.1	22.0	7.2	\$170,863	\$851,508	\$108,977	-	-	-			
Interferon β-1a 44 mcg (Rebif)	\$1,141,309	31.4	22.1	7.2	\$252,252	\$1,250,947	\$173,167	\$19,972,351	\$45,254,841	DOMINATED			
Dimethyl fumarate	\$1,049,345	30.9	22.2	7.7	\$187,735	\$953,487	\$137,525	\$276,959	\$1,564,932	\$946,145			
Interferon β-1b 250 mcg (Betaseron)	\$1,084,446	31.8	22.2	7.8	\$194,208	\$900,413	\$176,471	\$306,152	\$1,063,945	DOMINATED			
Interferon β-1b 250 mcg (Extavia)	\$986,453	31.8	22.2	7.8	\$167,708	\$777,549	\$152,391	\$152,578	\$530,242	DOMINATED			
Fingolimod	\$1,138,839	29.4	22.2	7.8	\$208,139	\$1,077,314	\$119,143	\$383,088	\$2,421,578	\$148,054			
Peginterferon β-1a	\$1,168,966	31.8	22.2	7.8	\$215,760	\$1,028,378	\$196,728	\$423,763	\$1,680,385	DOMINATED			
Natalizumab	\$1,282,367	26.6	22.4	9.1	\$181,819	\$917,530	\$99,144	\$198,761	\$1,022,969	\$88,525			
Daclizumab	\$1,501,968	27.7	22.7	9.8	\$199,626	\$907,524	\$139,183	\$233,098	\$961,479	\$182,281			
Ocrelizumab	-	27.3	22.7	10.0	-	-	-	-	-	-			
Alemtuzumab	\$588,965	22.9	23.1	11.8	\$29,048	\$132,125	\$17,164	DOMINANT	DOMINANT	DOMINANT			

Table E18. Scenario 2 Results: Lower Untreated ARR by EDSS States Data Source¹³⁸

					Comp	ared to Support	ive Care	Compared to GA 20 mg (Glatopa)			
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	
		Results for	RRMS				Pairwise	Results for RRMS			
Supportive Care	\$318,580	7.5	21.4	6.4	-	-	-	-	-	-	
Teriflunomide 7mg	\$938,667	6.9	21.9	8.4	\$306,564	\$1,351,403	\$990,791	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 22mcg (Rebif)	\$1,076,635	6.7	21.9	8.5	\$361,851	\$1,541,766	\$1,007,497	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 30 mcg (Avonex)	\$1,056,839	7.3	22.0	8.6	\$343,963	\$1,415,051	\$4,365,103	DOMINATED	DOMINATED	DOMINATED	
Teriflunomide 14mg	\$956,490	6.9	22.0	9.0	\$249,297	\$1,087,608	\$1,027,239	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Copaxone)	\$1,148,393	6.6	22.0	9.0	\$320,648	\$1,351,563	\$974,465	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Glatopa)	\$851,069	6.6	22.0	9.0	\$205,759	\$867,294	\$625,311	-	-	-	
Interferon β-1a 44mcg (Rebif)	\$1,102,937	6.7	22.1	9.0	\$299,688	\$1,266,035	\$1,033,751	\$8,588,276	\$45,193,008	DOMINATED	
Dimethyl fumarate	\$1,012,444	6.6	22.2	9.5	\$222,968	\$968,590	\$818,925	\$307,956	\$1,575,932	DOMINATED	
Fingolimod	\$1,103,982	6.2	22.2	9.5	\$254,483	\$1,095,250	\$616,710	\$507,511	\$2,452,309	\$599,354	
Peginterferon β-1a	\$1,130,637	7.0	22.2	9.7	\$248,871	\$1,040,410	\$1,563,762	\$414,149	\$1,678,575	DOMINATED	
Interferon β-1b 250mcg (Betaseron)	\$1,045,908	7.0	22.2	9.7	\$223,742	\$911,925	\$1,478,008	\$293,954	\$1,061,164	DOMINATED	
Interferon β-1b 250 mcg (Extavia®)	\$947,915	7.0	22.2	9.7	\$193,597	\$789,061	\$1,278,877	\$146,112	\$527,461	DOMINATED	
Natalizumab	\$1,252,089	5.6	22.4	10.6	\$222,740	\$934,999	\$507,418	\$250,151	\$1,043,126	\$405,823	
Ocrelizumab	-	6.0	22.7	11.5	-	-	-	-	-	-	
Daclizumab	\$1,469,981	6.2	22.7	11.3	\$233,812	\$920,096	\$884,940	\$264,884	\$970,955	\$1,376,739	
Alemtuzumab	\$563,992	5.1	23.1	13.0	\$37,404	\$145,623	\$103,864	DOMINANT	DOMINANT	DOMINANT	

Table E19. Scenario 3 Results: NMA Inputs Using Only 12-week Disability Progression Results

					Compa	red to Supportiv	ve Care	Com	pared to GA 20 mg (Glatopa)		
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life- Year	Cost per Relapse Avoided		
	Results for RRMS				Pairwise Results for RRMS							
Interferon β-1b 250 mcg (Betaseron)	\$960,662	13.8	21.7	7.1	\$443,977	\$2,239,228	\$244,035	DOMINATED	DOMINATED	\$2,202,176		
Interferon β-1b 250 mcg (Extavia)	\$877,375	13.8	21.7	7.1	\$385,038	\$1,941,965	\$211,639	DOMINATED	DOMINATED	\$819,809		
Glatiramer acetate 20mg (Copaxone)	\$1,102,631	13.8	21.8	7.5	\$438,278	\$2,122,193	\$306,438	DOMINATED	DOMINATED	DOMINATED		
Glatiramer acetate 20mg (Glatopa)	\$827,981	13.8	21.8	7.5	\$281,819	\$1,364,601	\$197,044	-	-	-		
Teriflunomide 7mg	\$950,852	14.8	21.9	7.8	\$294,960	\$1,374,038	\$404,093	\$363,132	\$1,413,391	DOMINATED		
Interferon β-1a 30 mcg (Avonex)	\$1,066,024	15.5	21.9	7.8	\$343,294	\$1,470,775	\$880,942	\$627,984	\$1,754,471	DOMINATED		
Interferon β-1a 22mcg (Rebif)	\$1,098,655	14.7	22.0	8.1	\$322,883	\$1,439,427	\$458,669	\$440,082	\$1,599,753	DOMINATED		
Teriflunomide 14mg	\$969,692	14.8	22.0	8.4	\$237,460	\$1,085,971	\$399,647	\$153,250	\$634,032	DOMINATED		
Fingolimod	\$1,094,292	13.4	22.0	8.6	\$267,375	\$1,249,996	\$253,592	\$244,131	\$1,081,301	\$543,144		
Dimethyl fumarate	\$1,019,752	14.2	22.1	8.8	\$220,189	\$1,011,242	\$318,465	\$140,773	\$606,259	DOMINATED		
Interferon β-1a 44mcg (Rebif)	\$1,131,621	14.6	22.1	8.8	\$261,752	\$1,145,713	\$466,994	\$234,541	\$908,331	DOMINATED		
Peginterferon β-1a	\$1,142,381	14.8	22.2	9.1	\$240,263	\$1,046,996	\$508,006	\$195,015	\$766,342	DOMINATED		
Natalizumab	\$1,261,443	12.3	22.4	10.1	\$210,313	\$937,340	\$227,316	\$163,087	\$690,570	\$275,648		
Daclizumab	\$1,431,127	12.8	22.5	10.1	\$247,409	\$1,045,397	\$308,008	\$224,886	\$877,112	\$572,398		
Ocrelizumab	-	12.8	22.7	11.2	-	-	-	-	-	-		
Alemtuzumab	\$563,925	11.1	23.5	14.1	\$27,649	\$109,559	\$43,511	DOMINANT	DOMINANT	DOMINANT		

Table E20. Scenario 4 Results: NMA Inputs Using Only 24-week Disability Progression Results

					Compar	ed to Support	ive Care	Compar	ed to GA 20 mg	(Glatopa)
Drug	Cost	Relapse s	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided
	R	esults for R	RMS				Pairwise R	esults for RRM	S	
Interferon β-1a 30 mcg (Avonex)	\$1,072,685	15.6	22.0	8.0	\$328,214	\$1,397,416	\$984,300	DOMINATED	DOMINATED	DOMINATED
Interferon β-1a 44mcg (Rebif)	\$1,100,247	14.3	22.0	8.2	\$312,691	\$1,414,745	\$377,774	DOMINATED	DOMINATED	DOMINATED
Glatiramer acetate 20mg (Copaxone)	\$1,159,233	14.3	22.0	8.4	\$307,307	\$1,369,170	\$402,025	DOMINATED	DOMINATED	DOMINATED
Glatiramer acetate 20mg (Glatopa)	\$861,908	14.3	22.0	8.4	\$196,684	\$876,304	\$257,306	-	-	-
Dimethyl fumarate	\$1,022,290	14.2	22.1	8.9	\$216,523	\$992,086	\$323,012	\$324,358	\$1,757,460	\$2,040,394
Daclizumab	\$1,454,930	12.9	22.6	10.5	\$235,209	\$981,018	\$323,817	\$284,965	\$1,097,975	\$420,773
Ocrelizumab	-	12.6	22.6	10.7	-	-	-	-	-	-
Interferon β-1b 250 mcg (Betaseron)	\$1,117,321	15.6	22.6	10.4	\$166,845	\$676,713	\$1,020,683	\$126,975	\$459,908	DOMINATED
Interferon β-1b 250 mcg (Extavia)	\$1,010,038	15.6	22.6	10.4	\$144,015	\$584,118	\$881,022	\$73,641	\$266,730	DOMINATED
Alemtuzumab	\$572,211	10.8	23.0	12.3	\$36,221	\$149,201	\$42,779	DOMINANT	DOMINANT	DOMINANT

Table E21. Scenario 5 Results: Inclusion of Indirect Costs

					<u>Compa</u>	red to Supporti	ive Care	<u>Compar</u>	ed to GA 20 mg (Glatopa)	
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	
		Results for	RRMS				Pairwise R	esults for RRMS			
Supportive Care	\$996,652	16.4	21.4	5.7	-	-	-	-	-	-	
Teriflunomide 7mg	\$1,550,444	14.8	21.9	7.8	\$259,899	\$1,206,920	\$368,157	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 22mcg (Rebif)	\$1,686,724	14.6	21.9	7.9	\$311,748	\$1,403,498	\$393,611	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 30 mcg (Avonex)	\$1,666,714	15.6	22.0	7.9	\$301,412	\$1,284,335	\$868,572	DOMINATED	DOMINATED	DOMINATED	
Teriflunomide 14mg	\$1,549,783	14.8	22.0	8.4	\$206,277	\$943,063	\$348,387	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Copaxone)	\$1,742,787	14.3	22.0	8.4	\$273,656	\$1,215,271	\$368,010	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Glatopa)	\$1,445,462	14.3	22.0	8.4	\$164,608	\$731,002	\$221,363	-	-	-	
Interferon β-1a 44mcg (Rebif)	\$1,695,567	14.5	22.1	8.5	\$254,073	\$1,128,122	\$374,454	\$10,290,125	\$44,876,569	DOMINATED	
Dimethyl fumarate	\$1,586,452	14.3	22.2	9.0	\$180,559	\$823,322	\$284,001	\$261,099	\$1,376,850	\$2,861,889	
Fingolimod	\$1,680,274	13.5	22.2	9.0	\$209,012	\$953,318	\$241,487	\$431,486	\$2,276,798	\$292,274	
Peginterferon β-1a	\$1,701,649	14.8	22.2	9.1	\$207,600	\$903,244	\$448,313	\$382,711	\$1,538,187	DOMINATED	
Interferon β-1b 250 mcg (Betaseron)	\$1,619,061	14.8	22.2	9.1	\$184,110	\$780,378	\$402,051	\$265,401	\$945,483	DOMINATED	
Interferon β-1b 250 mcg (Extavia)	\$1,521,069	14.8	22.2	9.1	\$155,123	\$657,514	\$338,751	\$115,588	\$411,779	DOMINATED	
Natalizumab	\$1,790,831	12.3	22.4	10.2	\$178,785	\$795,447	\$195,561	\$201,318	\$898,367	\$169,836	
Daclizumab	\$1,987,561	13.0	22.7	10.9	\$192,496	\$791,845	\$297,858	\$223,903	\$850,448	\$417,223	
Alemtuzumab	\$1,023,634	10.8	23.1	12.6	\$3,918	\$16,010	\$4,881	DOMINANT	DOMINANT	DOMINANT	
		Results for	PPMS		Pairwise Results for PPMS						
Supportive Care	\$858,690		15.6	2.7							

Table E22. Scenario 6 Results: Continuation of DMT Use Beyond EDSS 7

					Compar	ed to Support	ive Care	Compared to GA 20 mg (Glatopa)			
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additiona	Cost per Additional	Cost per Relapse	Cost per Additional	Cost per Additional	Cost per Relapse	
		Results for I			I QALY	Life-Year	Avoided	QALY Results for RRM	Life-Year	Avoided	
Teriflunomide 7mg	\$1,081,495	14.4	22.1	8.0	\$320,636	\$1,562,238	\$362,433	DOMINATED	DOMINATED	DOMINATED	
<u> </u>											
Interferon β-1a 22mcg (Rebif)	\$1,332,706	13.8	22.1	8.2	\$403,871	\$1,894,407	\$374,807	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 30 mcg (Avonex)	\$1,332,736	14.9	22.2	8.2	\$401,593	\$1,774,926	\$639,342	DOMINATED	DOMINATED	DOMINATED	
Teriflunomide 14mg	\$1,076,084	14.4	22.2	8.6	\$257,602	\$1,267,972	\$353,115	DOMINATED	DOMINATED	DOMINATED	
Interferon β-1a 44mcg (Rebif®)	\$1,329,684	13.7	22.3	8.7	\$329,179	\$1,537,404	\$361,967	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Copaxone)	\$1,424,948	13.4	22.3	8.7	\$360,576	\$1,671,917	\$352,874	DOMINATED	DOMINATED	DOMINATED	
Glatiramer acetate 20mg (Glatopa)	\$1,047,019	13.4	22.3	8.7	\$235,348	\$1,091,260	\$230,321	-	-	-	
Dimethyl fumarate	\$1,122,565	13.8	22.3	9.2	\$226,812	\$1,120,809	\$300,124	\$169,138	\$1,503,586	DOMINATED	
Fingolimod	\$1,291,686	12.7	22.3	9.2	\$269,474	\$1,299,266	\$254,631	\$465,358	\$2,908,840	\$367,116	
Peginterferon β-1a	\$1,311,556	14.2	22.4	9.3	\$266,939	\$1,234,174	\$424,407	\$417,353	\$1,903,483	DOMINATED	
Interferon β-1b 250 mcg (Betaseron)	\$1,275,008	13.9	22.4	9.4	\$253,686	\$1,121,730	\$368,453	\$335,004	\$1,228,600	DOMINATED	
Interferon β-1b 250 mcg (Extavia)	\$1,152,596	13.9	22.4	9.4	\$220,588	\$975,379	\$320,381	\$155,132	\$568,935	DOMINATED	
Natalizumab	\$1,450,838	11.3	22.6	10.5	\$233,998	\$1,097,991	\$214,201	\$231,660	\$1,110,032	\$190,722	
Ocrelizumab	-	11.9	22.8	11.3	-	-	-	-	-	-	
Daclizumab	\$1,766,305	11.7	22.9	11.3	\$257,064	\$1,093,330	\$299,463	\$282,835	\$1,095,381	\$425,638	
Alemtuzumab	\$611,100	9.6	23.3	13.0	\$37,769	\$160,484	\$40,193	DOMINANT	DOMINANT	DOMINANT	
	Results for PPMS						<u>Pairwise</u>	Results for PPMS			
Ocrelizumab			17.1	3.5							

Table E23. Scenario 7 Results: Higher AE Rates, Utility Decrements, and Associated Costs

					Compare	ed to Supportiv	<u>ve Care</u>	Compared to GA 20 mg (Glatopa)				
Drug	Cost	Relapses	Life- Years	QALYs	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided	Cost per Additional QALY	Cost per Additional Life-Year	Cost per Relapse Avoided		
		Results for R	RMS		Pairwise Results for RRMS							
Supportive Care	\$333,273	16.4	21.4	5.7								
Teriflunomide 7mg	\$951,426	14.8	21.9	7.8	\$294,069	\$1,347,188	\$410,944	DOMINATED	DOMINATED	DOMINATED		
Interferon β-1a 22mcg (Rebif)	\$1,089,045	14.6	21.9	7.9	\$343,901	\$1,537,123	\$431,086	DOMINATED	DOMINATED	DOMINATED		
Interferon β-1a 30 mcg (Avonex)	\$1,070,100	15.6	22.0	7.9	\$335,408	\$1,412,307	\$955,117	DOMINATED	DOMINATED	DOMINATED		
Teriflunomide 14mg	\$968,948	14.8	22.0	8.4	\$239,627	\$1,083,798	\$400,378	DOMINATED	DOMINATED	DOMINATED		
Glatiramer acetate 20mg (Copaxone)	\$1,160,376	14.3	22.0	8.4	\$306,302	\$1,347,150	\$407,946	DOMINATED	DOMINATED	DOMINATED		
Glatiramer acetate 20mg (Glatopa)	\$863,052	14.3	22.0	8.4	\$196,194	\$862,881	\$261,299					
Interferon β-1a 44mcg (Rebif)	\$1,115,038	14.5	22.1	8.4	\$285,845	\$1,261,851	\$418,842	\$7,273,492	\$45,214,084	DOMINATED		
Dimethyl fumarate	\$1,024,211	14.3	22.2	9.0	\$213,360	\$964,505	\$332,702	\$299,504	\$1,573,816	\$3,271,299		
Fingolimod	\$1,115,052	13.5	22.2	9.0	\$240,999	\$1,090,198	\$276,161	\$463,552	\$2,443,452	\$313,668		
Peginterferon β-1a	\$1,142,769	14.8	22.2	9.1	\$240,267	\$1,037,128	\$514,765	\$418,196	\$1,679,463	DOMINATED		
Interferon β-1b 250 mcg (Betaseron)	\$1,058,056	14.8	22.2	9.1	\$216,054	\$908,734	\$468,180	\$298,008	\$1,062,062	DOMINATED		
Interferon β-1b 250 mcg (Extavia)	\$960,063	14.8	22.2	9.1	\$186,843	\$785,871	\$404,881	\$148,254	\$528,359	DOMINATED		
Natalizumab	\$1,261,748	12.3	22.4	10.1	\$210,252	\$929,957	\$228,631	\$232,378	\$1,037,080	\$196,060		
Ocrelizumab		12.8	22.7	10.8								
Daclizumab	\$1,480,173	13.0	22.7	10.8	\$223,907	\$916,499	\$344,747	\$254,806	\$968,143	\$474,964		
Alemtuzumab	\$572,064	10.8	23.1	12.6	\$34,801	\$141,694	\$43,195	DOMINANT	DOMINANT	DOMINANT		
		Results for P	PMS				<u>Pairwise</u>	se Results for PPMS				
Supportive Care	\$264,334		15.6	2.7								
OCR			16.1	3.3								

Appendix F. Patient Survey Questions

1. What is your current age? (numerical entry)

2. What is your gender?

a) Female

	b)	Male
3.	Eth	nicity (check ONLY one with which you MOST CLOSELY identify):
	a)	Hispanic or Latino/a
	b)	Not Hispanic or Latino
	c)	Unknown
	d)	Not Reported
4.	Race	e (check those with which you identify):
	a)	American Indian
	b)	Asian
	c)	Black
	d)	Native Hawaiian/Pacific Islander
	e)	Not Reported
	f)	Unknown
	g)	White
5.	Do y	you live in the United States?
	a)	Yes
	b)	No
6.	Do y	you currently have health insurance?
	a)	Yes
	b)	No
7.	If Y	es – What type(s) of health insurance do you have? (Please check all that apply)
	a)	Any Private, Commercial or Pre-paid health plan (such as Aetna, BC/BS, Prudential, Oxford, COBRA, Kaiser, any other HMO or PPO)
	b)	Medicare. Medicare is the federal health insurance program for people who are 65 or older,

certain younger people with disabilities, and people with End-Stage Renal Disease

- c) Medicaid. Medicaid is a health insurance program for low-income individuals and those with disabilities. Medicaid is a joint program, funded primarily by the federal government and run at the state level, where coverage (and the name of the coverage) may vary. Elderly low-income people are eligible for both Medicare and Medicaid.
- d) Tri-Care (formerly CHAMPUS, CHAMP-VA)
- e) Department of Veterans Affairs OR Canadian Forces
- f) Indian Health Service OR Non-Insured Health Benefits for First Nations, Inuit
- g) Universal Health Care Canadian
- h) Supplemental Insurance (such as Medigap, Value Benefit Plans, AARP, etc.)
- i) Other Primary Insurance (please specify)
- 8. Has your doctor diagnosed you with multiple sclerosis (MS)?
 - a) Yes
 - b) No
 - c) Unsure
- 9. If Q8 is yes What type of MS do you have?
 - a) Clinically Isolated Syndrome (CIS)
 - b) Relapsing-remitting (sometimes referred to as relapsing) MS
 - c) Secondary progressive MS
 - d) Primary progressive MS
 - e) Progressive relapsing MS
 - f) I'm not sure
- 10. If Q8 is yes In what year were you diagnosed with MS? (date entry)
- 11. If Q8 is yes Are you currently taking one or more of the following drugs for your MS?
 - a) Yes
 - b) No \rightarrow go to question 13
- 12. If yes, please select the drug(s) you are taking:
 - a) Aubagio® (teriflunomide)
 - b) Avonex® (Interferon beta-1a)
 - c) Betaseron® (interferon beta-1b)
 - d) Cellcept (mycophenolate mofetil)
 - e) Copaxone® (glatiramer acetate)
 - f) Extavia® (interferon beta-1b)
 - g) Gilenya® (fingolimod)
 - h) Glatopa (glatiramer acetate)

- i) Imuran (azathioprine)
- j) Lemtrada[™] (alemtuzumab)
- k) Novantrone® (mitoxantrone)
- I) Ocrevus® (ocrelizumab)
- m) Plegridy® (peginterferon beta-1a)
- n) Rebif® (interferon beta-1a)
- o) Rituxan® (rituximab)
- p) Steroids
- q) Tecfidera® (dimethyl fumarate)
- r) Tysabri® (natalizumab)
- s) Zinbryta™ (daclizumab)
- t) Clinical trial drug (please specify)
- 13. Are you currently on the MS drug that you prefer to be on?
 - a) Yes
 - b) No, the drug that I'm currently on is not my top choice
 - c) No, I'm not on a MS drug at this time but would prefer to be on one
 - d) Not applicable—I'm not on a MS drug at this time and do not wish to be on one
- 14. If (b) or (c) above What factor(s) are preventing you from being on your preferred drug? (check all that apply)
 - a) Out of pocket costs
 - b) Insurance restrictions/Risk of side effects
 - c) Doctor or health care provider won't prescribe it
 - d) Inconvenience/access issues (time, transportation, drug storage, etc.)
 - e) My preferred drug is not approved for my form of MS
 - f) Other (please specify)
- 15. If Q8=Yes and Q11=Yes How important were the following factors in selection of the drug you are currently taking? (Not Important, Slightly Important, Moderately Important, Important, Very Important)
 - a) Restrictions that my insurance plan puts on access to certain drugs
 - b) Costs that I pay every month for the drug (co-pay, coinsurance, etc.)
 - c) Doctor or healthcare professional recommendation
 - d) The way I take the drug (for example: by mouth, injected by myself, or infused in a healthcare setting)
 - e) How often I need to take the drug (for example: daily injectable, weekly injectable, infused once or twice per year)

- f) Risk of progressive multifocal leukoencephalopathy or PML
- g) Risk of serious infection other than PML
- h) Other long term risks such as liver problems, cancer, other infections, thyroid problems, kidney problems, bleeding problems, change in vision, breathing problems
- i) Risks during pregnancy to unborn child (only answer if you are a woman of childbearing age)
- j) Risk of side effects such as flu-like symptoms, skin reactions from injections, slow heartbeat, upset stomach, hair loss, infusion reactions
- k) The need for frequent or prolonged monitoring and/or blood tests
- I) The drug's effectiveness in preventing relapses and reducing new MRI lesion
- m) The drug's effectiveness in delaying disability
- The drug's effectiveness in allowing me to continue working and/or performing normal daily activities
- o) Other (please describe)
- 16. Since you have been taking your MS drug have you: (Yes, No, Not sure, N/A)
 - a) Had fewer relapses (episodes of new or returning symptoms)
 - b) Had less or no progression (worsening) of MS symptoms
 - c) Missed less time from work or other daily activities
 - d) Been hospitalized less frequently
- 17. Do you feel that you had input into the decision making for your MS drug?
 - a) Yes, my doctor and I discussed the drug and made the decision together
 - b) Yes, my doctor gave me the drug information and told me to make the decision
 - c) No, my doctor decided and prescribed the drug
- 18. Did you consult with others in making your drug decision?
 - a) Care Partner
 - b) Spouse
 - c) Parent
 - d) Friend
 - e) Other (please specify)
- 19. If 18=Yes What was their role in helping you make the decision? (please describe)
- 20. Have you had trouble starting the prescribed MS drug for any of the following reasons?
 - a) My health plan does not cover the drug
 - b) I must try another drug before my insurance company will approve the drug that my doctor prescribed

- c) I am unaware of or do not qualify for patient assistance programs, so I cannot afford my drug
- d) I do not have trouble getting the drug prescribed by my doctor
- 21. What, if anything, sometimes prevents you from taking your MS drug as it is prescribed? (check all that apply)
 - a) Nothing, I almost always take my MS drug as prescribed
 - b) Changes in my health plan that interferes with regular drug access
 - c) Changes in my specialty pharmacy that interferes with regular shipments
 - d) Difficulties completing manufacturer's patient assistance program forms and/or enrolling in the program
 - e) Side effects of the drug
 - f) I don't like to take it
 - g) I forget to take it
 - h) Lack of transportation to a drug infusion location
 - i) The amount I pay for the drug
 - j) Other (please specify)
- 22. If Q11=No If you are <u>not</u> taking a drug for your MS, please select all that apply:
 - a) I am not a candidate for these drugs
 - b) I do not want to use any of these drugs
 - c) I do not have health insurance
 - d) I have health insurance but cannot afford the costs that apply to these drugs
 - e) I stopped due to experiencing bad side effects/adverse events
 - f) I am planning or trying to become pregnant or are currently pregnant
 - g) Other (please specify)
- 23. If Q8=Yes Are you currently working?
 - a) Yes, full-time
 - b) Yes, part-time
 - c) No
- 24. If Q23=a or b How many days of work did you miss because of your last relapse?
 - a) 1-5 days
 - b) 6-10 days
 - c) 11-15 days
 - d) 16-20 days
 - e) 21 days or more

- f) I did not miss work because of my last relapse
- 25. If Q8=Yes, and Q24=B-F How many days of work did someone who helps you when you are ill miss because of your last relapse?
 - a) 1-5 days
 - b) 6-10 days
 - c) 11-15 days
 - d) 16-20 days
 - e) 21 days or more
 - f) I do not have someone who helps care for me when I am ill
 - g) The person who helps me did not miss work because of my last relapse (or is paid to help me)