

CALIFORNIA TECHNOLOGY ASSESSMENT FORUMSM

Controversies in Migraine Management

Public Meeting

July 11, 2014

Goal

 To prevent, manage, and relieve migraine headaches with the minimum burden of treatment and maximum amount of pain relief, function, and quality of life

Success

- Patients enabled, knowledgeable, and capable of applying recommended therapies through partnership with clinicians in choice and monitoring of treatments
- Clinicians healthy and satisfied patients, professional learning
- Care system coordinated between clinicians and settings, providing high value care for individuals and the population of migraine patients

Barriers to Improved Care

- Inadequate understanding of disease
- Biological heterogeneity
- Lack of high quality evidence on therapies and their comparisons
- Silos in health care system
- Failure to apply existing evidence
- Failure to learn from experience

Themes for the Day

- Quality of Evidence
 - Guidance from the International Headache Society
 - Interpretation of placebo and sham procedure controls
 - Controlled and observational studies
- Comparative Effectiveness
- Societal Cost Impact
- Evidence and Action

Agenda

- Meeting Convened | 10:00 10:15 am
- Presentation of the Evidence and Voting Questions, Q&A | 10:15 – 11:30 am
- Public Comments | 11:30 12:00 Noon
- Lunch | 12:00 12:30 pm
- Roundtable: Q&A with Experts | 12:30 1:15 pm
- CTAF Deliberation and Votes | 1:15 2:00 pm
- **Break**| 2:00 2:15 pm
- Roundtable Discussion and Best Practice/Policy Recommendations | 2:15 – 3:35 pm
- Reflections from CTAF Panel | 3:35 3:55 pm
- Summary and Closing Remarks | 3:55 4:00 pm
- Meeting Adjourned | 4:00 pm

CALIFORNIA TECHNOLOGY ASSESSMENT FORUMSM

Controversies in Migraine Management Evidence Review

Jeffrey A. Tice, MD Division of General Internal Medicine Department of Medicine University of California San Francisco

July 11, 2014

I have no conflicts of interest.

Key Definitions

- Features of migraine headaches: Unilateral location, pulsating, moderate to severe intensity, nausea and/or vomiting, photophobia or phonophobia
- **Episodic migraine**: Headaches occurring less than 15 days a month, some with features of migraines
- Chronic migraine: Headaches 15 or more days per month for 3 months with migraine features on at least 8 days

Epidemiology

- Female predominance
 - 16% of women
 - 6% of men
- Adolescents affected
- Peak prevalence age 40 years

Four Therapies for Migraine

- Transcranial magnetic stimulation (TMS)
 - SpringTMS for acute treatment of migraine with aura
- Transcutaneous supraorbital nerve stimulation
 - Cefaly device for prevention of episodic migraine
- Botulinum Toxin A
 - Botox for the prevention of chronic migraine
- Parenteral opioid medications
 - For acute treatment of migraine headaches in the ER

Typical Response to Drug Therapy

Treatment	Outcome	Active	Placebo
Acute Treatment	2 hour response	60%	30%
	2 hour pain free	30%	10%
Prevention	Headache frequency	- 45%	
	>50% reduction	45%	25%

EVIDENCE REVIEW

TRANSCRANIAL MAGNETIC STIMULATION

Cerena/SpringTMS

 Transcranial magnetic stimulation generates electrical currents in the brain and may disrupt cortical spreading depression associated with aura

• Treat during aura

- One RCT with Cerena Device
 - FDA approval December 2013
 - Never marketed
- FDA approval of SpringTMS May 23, 2014
 - Smaller, lighter device from the same company

Cerena/SpringTMS Device

Cerena RCT

• Randomized 201 participants

- Ages 18-70 years old with 1-8 migraines per month with aura at least 30% of headaches
- Analyzed 164 participants who used device at least once
- **Blinding**: believe received active treatment (67% vs 71%)

• Key outcomes

- 2 hour pain free:
- 2 hour response:
- 24 hour pain free:
- Used rescue medication:
- Change in disability scale
- Adverse events

39% vs 22%, p=0.018 72% vs 67%, p NS 29% vs 16%, p=0.04 48% vs 46%, p NS -4.6 vs -4.7, p NS 14% vs 9%, p NR

Summary: SpringTMS

- No data on the marketed device, though likely to function similarly to the Cerena device
- Only indicated in migraines with aura
- One moderate sized, multi-center, sham-controlled, well-blinded trial with statistically significant improvements in pain at 2, 24, and 48 hours, but no difference in the use of rescue medications or disability
- 18% of patients did not use the device in 3 months
- No clear AEs associated with use of the device

TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION

Bilateral Supraorbital Nerve Stimulation: Cefaly

- Headband to be worn 20 minutes each day
- One randomized trial for migraine prevention
 - 67 patients with episodic migraines
- One randomized trial evaluating side effects
 - 30 healthy volunteers
- One retrospective cohort
 - 2,313 people who rented the device for 40 days

Cefaly Device

Cefaly RCT

- Randomized 67 participants
 - Ages 18-65 years old with ≥2 migraines per month
- Key outcomes
 - Change in headache days:
 - \geq 50% reduction in headache days:
 - Change in rescue medication:
 - Patient satisfaction:
 - Adverse events:

-2.1 vs +0.3, p=0.054 38% vs 12%, p=0.023

- -4.2 vs 0, p=0.007

None*

71% vs 39%, p NR

- * 0 adverse events is unrealistic in 3 month trial
 - Decreased vigilance and attention in 2nd RCT (p<0.001)
 - 4.3% with AE in 2,313 participant cohort: paresthesias during stimulation

Summary

- One small RCT with significant concerns about unblinding (sensation of electrical stimulation) and baseline differences as well as wide confidence intervals around estimates of efficacy
- Concerns about under-reporting of AEs

BOTULINUM TOXIN

Botulinum Toxin

- FDA approved for chronic migraine prevention
- 5 units injected into each of 31 sites with up to 40 additional units injected at sites "following the pain"
- Treatments every 12 weeks
- 22 randomized trials with 4,920 participants
 - Non-standard dosing in most trials
 - Meta-analysis: not effective for episodic migraines
 - Two phase 3 trials using standard dosing
 - PREEMPT 1 and PREEMPT 2

Botulinum Toxin – Injection Sites

PREEMPT 1 & 2

- Population
 - 18 65 years old with chronic migraine headaches
 - More than one third never treated with preventive therapy
- Intervention
 - Standard injections every 12 weeks for 2 cycles (24 weeks)
- Control: Saline injections
- Outcomes at 24 weeks
 - Number of headache episodes
 - Number of headache days per 28 days

Benefits of Botulinum Toxin for Patients with Chronic Migraine

Study	Group	N	Headache episodes	Headache days per month	Rescue meds
PREEMPT 1	Botox	341	-5.2	-7.8*	-10.3
	Sham	338	-5.3	-6.4	-10.4
PREEMPT 2	Botox	347	-5.3*	-9.0*	-9.9
	Sham	358	-4.6	-6.7	-8.4

*p < 0.05 compared with placebo

Other benefits from pooled results from PREEMPT trials:

Headache hours:

 \geq 50% reduction in headache episodes:

 \geq 50% reduction in headache days:

Change in Headache Impact Test Score:

(range 36-78, change 2.5 points or greater clinically significant)

28

-120 vs -81, p<0.001

49% vs 43%, p=0.065

47% vs 35%, p<0.001

-4.8 vs -2.4, p<0.001

Harms: Pooled randomized trials

Adverse event	Botox	Placebo	Difference
Muscle weakness	21%	2%	19%
Neck pain	19%	4%	15%
Serious AE	4.8%	2.3%	2.5%
Withdrawal	40%	32%	8%

Methodologic Concerns

- Partial unblinding from side effects of botulinum toxin
 - Unable to wrinkle forehead
 - Impacts the placebo effect
- Small baseline differences between groups
 - Headache episodes (Botox 12.2; Sham 13.0; p=0.004)
 - Migraine episodes (Botox 11.4; Sham 12.2; p=0.004)
 - Headache hours (Botox 296; Sham 281; p=0.021)

Key Issues in Trials of Botulinum Toxin versus Sham Injections

- No other FDA-approved therapies for chronic migraine prevention
- Large placebo effect from sham injection with a smaller between group difference
- Likely partial unblinding could explain difference between active and placebo groups
- More adverse events, but serious AEs not thought to be treatment related

Trials of Botulinum Toxin versus Drug Therapy

- 3 underpowered trials
 - 2 topiramate, 1 amitriptyline
 - Non-standard injections
 - Dysport in one trial
- Trend towards fewer headaches with drug therapy but more adverse events with drug therapy

OPIOIDS IN THE ER

Opioid Analgesics

- Commonly used in the ER for pain
 - MD comfort with use
- Commonly used for migraine headaches
 - 50% of patients in 1998
 - 53% of patients in 2010
- Concerns with opioids
 - Potential for dependence and abuse
 - Double the risk of transforming migraines from episodic to chronic compared to triptans, NSAIDS, acetaminophen

Randomized Trials of Opioids

- 17 trials randomizing 1,203 participants
- Meperidine (Demerol) is most studied (13/17 trials)
- Hydromorphone (Dilaudid most common opioid used for migraines in the ER) not studied in RCTs
- Four placebo-controlled trials
 - Better pain control with opioids
 - More side effects: sedation, nausea, dizziness

Summary

- Fifteen active-control trials
 - One trial: meperidine more effective than ketorolac (n=31)
 - Nine trials: Equivalence including 3 compared to ketorolac
 - Five trials: Active control more effective than opioid
- No trials compared to parenteral triptans
- AHRQ network meta-analysis
 - Neuroleptic monotherapy (promethazine) or in combination with dihydroergotamine most effective (-40/100 VAS)
 - Ketorolac, opioids, or metoclopramide next (-24/100 VAS)

Key Comments Received

- Dozens of patients have 50% to 90% reduction in headache days with botulinum toxin injections
- Quality of life significantly improved on both the HIT-6 and three domains of the Migraine Specific Quality of Life Questionnaire (MSQ)
- Adverse event rates in the PREEMPT trials were lower than those reported in the assessment

CALIFORNIA TECHNOLOGY ASSESSMENT FORUMSM

Economic Evaluation of Management Options for Migraine

Daniel A. Ollendorf, PhD Chief Review Officer Institute for Clinical & Economic Review

July 11, 2014

I have no conflicts of interest.

Overview

- 4 distinct models
- Evaluation of outcomes and costs in hypothetical cohorts of 1,000 patients:
 - SpringTMS vs. sumatriptan to treat episodic migraine
 - Cefaly vs. metoprolol to prevent episodic migraine
 - Botox vs. multiple comparators to prevent chronic migraine
- Population-based analysis of economic impact of opioid use among migraneurs in California and potential cost savings from reduced use in ED

Overview

- One-year time horizon
- Clinical effectiveness sources: RCTs, systematic reviews, and meta-analyses
- Cost sources: Medi-Cal payment rates (where available), literature-based estimates
 - Treatment
 - Direct costs of migraine management (visits, ED, hospital, other drugs)
 - Lost productivity
- Cost-effectiveness: cost per "responder", cost per headache day averted (Botox)

SpringTMS vs. Sumatriptan

Results

Outcome/Cost	SpringTMS	Sumatriptan	Difference (SpringTMS- Sumatriptan)
Treatment response (n)			
Responders	290	188	102
Nonresponders	710	812	
Costs (\$)			
Intervention	\$750,000	\$106,278	\$643,722
Other migraine mgmt	\$2,283,405	\$2,422,732	(\$139,328)
Total	\$3,033,405	\$2,529,011	\$504,394
Cost per treatment response (\$)			~\$4,900

Key Assumptions

- Treatment response evaluated at patient level; SpringTMS assumed to be equivalent to original Cerena device
- Patients discontinuing sumatriptan would incur costs of one month of drug therapy but receive no clinical benefit
- No SpringTMS user would discontinue due to adverse effects
- Cost of SpringTMS based on approximate UK price (\$750)
- Patients responding to either treatment would eliminate the need for other acute medications and have 25% reductions in other costs of episodic migraine management
- Nonresponders require use of intramuscular ketorolac for rescue and full costs of episodic migraine management

Cost-Effectiveness Benchmarks

- Cost per pain-free treatment response in multiple comparisons of triptans, ergotamine, and severity-based treatment strategies:
 - \$7-\$60
- For SpringTMS in our analysis:
 - \$4,900 at assumed price of \$750

Cefaly vs. Metoprolol

Results

Outcome/Cost	Cefaly	Metoprolol	Difference (Cefaly- Metoprolol)
Treatment response (n)			
Responders	382	395	(13)
Nonresponders	618	605	
Costs (\$)			
Intervention	\$449,000	\$49,225	\$399,775
Other migraine mgmt	\$1,770,053	\$1,754,691	\$15,363
Total	\$2,219,053	\$1,804,371	\$415,138
Cost per treatment response (\$)			Less effective, more expensive

Key Assumptions

- Patients discontinuing metoprolol would incur costs of one month of drug therapy but receive no clinical benefit
- No Cefaly user would discontinue due to adverse effects
- Patients responding to either treatment would eliminate need for other preventive medications and have 50% reductions in other costs of episodic migraine management

Botox vs. Multiple Comparators

Cost per Headache Day Averted

Monthly Headache Frequency (Days)	Botox vs. Placebo Injection	Botox vs. No Therapy
20	\$160	\$5
15	\$220	\$20

Cost-Effectiveness Benchmarks

- Cost per headache day averted (vs. placebo) for:
 - Topiramate = \$115
 - Divalproex = \$48
 - Gabapentin = \$138
- Our analysis of Botox for patients with monthly headache frequencies of 20 or 15 days:
 - Cost per headache day averted ~\$160 or \$200 vs. placebo
 - Cost per headache day averted ~\$5 or \$20 vs. no treatment

Key Assumptions

- Baseline headache frequency: 20 days/mo from Botox Phase III trials
- Primary comparisons to sham (placebo) injection and no treatment
- Reductions in the number of headache days per month resulted in offsets to the cost of each "headache day" (including direct medical costs and lost productivity)
- Patients discontinuing botulinum toxin A or amitriptyline due to side effects were assumed to have one injection or month of therapy before discontinuing and <u>no</u> clinical benefit
- Exploratory comparison (in report) of botulinum toxin A and amitriptyline based on RCT involving another branded form of toxin (Dysport)

Economic Burden of Opioid Use & Potential Savings from Reduced Use in ED

Burden of Opioid Use Among California Migraneurs (1 Year)

Estimate (N or \$)	Adolescent	Adult	Total
Migraine patients	257,054	3,206,977	3,464,031
Current Opioid Use Nondependent Dependent Total	32,222 7,192 39,414	419,984 85,845 505,828	452,205 93,036 545,242
Transformation to Chronic Migraine New cases Excess costs	1,791 \$13.6 million	18,834 \$142.7 million	20,625 \$156.3 million
Opioid Dependence New cases Total cases Excess costs	203 7,395 \$207 million	2,646 88,491 \$2.5 billion	2,849 95,885 \$2.7 billion
TOTAL COSTS	\$220.6 million	\$2.6 billion	\$2.8 billion

Potential Cost Savings from Reduced Use of Opioids in ED

Key Assumptions

- The incidence of transformation was calculated among patients with episodic migraine only
- The incidence of opioid dependence was calculated among nondependent opioid users only
- Both incident and prevalent cases of opioid dependence received full costs of opioid dependence
- Other social costs of dependence (e.g., law enforcement, victimization) were <u>not</u> included, as opioids were assumed to be obtained through legal channels in this analysis
- The reported number of ED encounters was assumed to be equivalent to the number of migraine patients visiting the ED (i.e., one encounter per patient on average)

Key Comments Received

- Revise estimate of cost of Botox
- Noted that RCT compared amitriptyline to another form of botulinum toxin A (Dysport)
- Botox model does not consider full breadth of clinical benefit
- Effects of lost productivity vary for different individuals
- Opioid model implies that ED use is the primary cause of opioid dependence and headache transformation