

Controversies in Obesity Management

Public Meeting

July 14, 2015

Agenda

- Public Meeting Convened, Topic Overview | 9:30 am
- Presentation of the Evidence and Economic Modeling, Q&A | 9:35 10:40 am (Dr. Dan Ollendorf)
- **Public Comments** | 10:40 11:30 am
- Lunch | 11:30 12:00 pm
- CTAF Q&A with Experts / Deliberation and Votes | 12:00 1:15 pm
- Break | 1:15 1:30 pm
- Barriers and Potential Solutions, Policy Roundtable Discussion, Best
 Practice/Policy Recommendations | 1:30 3:05 pm
- Reflections from CTAF Panel | 3:05 3:25 pm
- Summary and Closing Remarks | 3:25 3:30 pm
- Meeting Adjourned | 3:30 pm
 - Download meeting materials: http://tinyurl.com/CTAF-OM

CTAF Overview

- Core program of the Institute for Clinical and Economic Review (ICER), an independent non-profit research organization that evaluates scientific evidence on the clinical effectiveness and cost implications of medical interventions
- Goal: Help patients, clinicians, insurers, and policymakers apply evidence to improve the quality and value of health care
- Deliberation and voting by CTAF Panel independent clinicians, methodologists, and leaders in patient engagement and advocacy
- Supported by grants from the Blue Shield of California Foundation and the California HealthCare Foundation

Evidence Review

Dan Ollendorf, PhD Chief Review Officer Institute for Clinical and Economic Review

July 14, 2015

I have no conflicts of interest.

Background

- Two-thirds of Americans overweight or obese
- Bariatric surgery: commonly employed for class 3 (BMI 40+) or class 2 (BMI 35-39.9) obesity
 - Uncertainties: long-term effectiveness and safety, best practices for patient selection and follow-up, outcomes in patients with BMI <35
- Newer treatment options:
 - Devices: vagus nerve block, temporary intragastric balloons, GI liner system
 - Drugs: liraglutide, lorcaserin, naltrexone/bupropion, phentermine/topiramate

Objective

- Evaluate evidence on comparative clinical effectiveness and comparative value of bariatric surgery, devices, and drugs vs. conventional weightloss management (combinations of diet, exercise, and/or behavioral/ lifestyle interventions)
 - Universal comparator in nearly all RCTs and cohort studies
 - Indirect comparisons between intervention types problematic due to marked differences in baseline characteristics and clinical comorbidity

Methods

- Target population: adults (18+) and adolescents (12-17) who are overweight or obese (BMI 25+)
- Interventions:
 - Surgery: Roux-en-y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), laparoscopic adjustable gastric banding (LAGB), biliopancreatic diversion with or without duodenal switch (BPD±DS)
 - Devices: Maestro[®], EndoBarrier[®], various balloons
 - Drugs: BELVIQ[®], Contrave[®], Qsymia[®], Saxenda[®]

Methods (2)

Comparators:

- Conventional weight-loss management
- Head-to-head comparisons (most commonly between surgical approaches)

• Outcomes:

- Mortality
- Weight loss
- Resolution of obesity-linked comorbidities
- Quality-of-life (QoL) and functional outcomes
- Complications and other adverse effects

Study Selection

- Primary focus on good- and fair-quality RCTs and prospective comparative cohort studies
- Retrospective comparative cohort data assessed separately from RCTs and prospective cohorts
- Case series data generally reserved for information on longer-term (>2 years) outcomes and evaluated separately:
 - Exception: devices, where follow-up terminates at balloon or DJBL removal (typically 6 months)

Level of Certainty in Evidence by BMI Class and Intervention Type

вмі	<:	30	30-3	34.9	35-39.99	≥40	
T2DM	Yes	No	Yes	No			
Bariatric Surg	Bariatric Surgery						
BPD							
LAGB							
RYGB							
VSG							
Devices	Devices						Кеу
IGB							No evidence
DJBL							Low certainty
vBloc							Moderate certainty
Drugs					-		High certainty
Liraglutide							
Lorcaserin							
N/B							
P/T							

BPD: biliopancreatic diversion; LAGB: laparoscopic adjustable gastric banding; RYGB: Roux-en-y gastric bypass; VSG: vertical sleeve gastrectomy; IGB: intragastric balloon; DJBL: dudoneal-jejunal bypass liner; vBloc: vagus nerve blocking device; N/B: naltrexone/bupropion; P/T: phentermine/topiramate

BARIATRIC SURGERY

Surgery vs. Conventional Weight-Loss Management

Mortality:

- 20-40% reductions in rate of all-cause mortality at 7-15 years of follow-up
- Some data concerns (e.g., independent effects of weight loss, health status of controls)

Weight loss:

 Meta-analysis: in patients with BMI ≥35, pooled mean difference of 7.4 kg/m² lost vs. conventional management (95% CI: 6.2, 8.6; range: 5-14)

Surgery vs. Conventional Weight-Loss Management (2)

- Comorbidity Resolution:
 - Type 2 diabetes most frequently studied by far
 - Nearly all studies of RYGB or LAGB in patients with BMI 30-34.9
 - Meta-analysis: surgical patients nearly 4 times more likely to achieve resolution (log OR 3.6; 95% CI 2.5, 4.7; range: 2.0-7.0)
 - Hypertension and hyperlipidemia also frequently tracked in diabetic populations
 - Very limited comparative evidence on comorbidity resolution other than diabetes (e.g., asthma, arthritis, sleep apnea)

Surgery vs. Conventional Weight-Loss Management (3)

Adolescents:

- Single RCT of 50 patients, age 14-18 (mean BMI 41), undergoing LAGB or lifestyle intervention*
- Difference of ~12 kg/m² lost in favor of LAGB
- Long-term outcomes (other than mortality):
 - Challenged by attrition, survivor bias, and crossover
 - <3% of more than 1,000 long-term studies had 80% or better sample retention after 2 years**
 - Best available data suggest 5-10% weight regain and 30-40% comorbidity relapse beyond 2 years of follow-up

^{*}O'Brien et al., JAMA 2010;303(6):519-526.

^{**}Puzziferri et al., JAMA 2014;312(9):934-942

Head-to-Head Evidence Comparing Variants of Bariatric Surgery

- Total of 24 good- and fair-quality studies comparing bariatric surgical procedures
- Meta-analysis of BMI change only feasible for RYGB vs. VSG
- No statistically-significant differences in BMI change between these two procedures in any individual study or overall

Harms of Bariatric Surgery

Prospective Studies

Procedure	# of Studies	# of Patients	Follow-Up; Range, Median (Months)	Complication Rate; Range, Median (%)*	Reoperation Rate; Range, Median (%)	# of Deaths
BPD	7	189	12-60, 18	17-79, 31.6	3-45, 13.0	0
LAGB	14	13,005	12-120, 24	3-61, 17.9	1-33, 14.8	11
RYGB	26	15,830	1-120, 16	0-78, 19.4	0-33, 6.0	62
VSG	12	2,613	12-36, 12	1-80, 9.5	0-17, 2.0	2

Retrospective Studies

Procedure	# of Studies	# of Patients	Follow-Up; Range, Median (Months)	Complication Rate; Range, Median (%)*	Reoperation Rate; Range, Median (%)	Mortality Rate; Range, Median (%)
BPD	9	2,659	3-63 (24)	8-83, 26.9	0-30, 3.6	0-2.9, 1.40
LAGB	17	16,335	3-72 (29)	0-53, 10.1	0-44, 7.4	0-2.0, 0.15
RYGB	23	840,895	2-72 (29)	0-78, 9.2	0-22, 5.8	0-4.3, 1.94
VSG	11	16,574	2-63 (23)	0-80, 8.8	0-17, 3.9	0-3.9, 0.07

^{*} Complication rate may include reoperations in some studies

Bariatric Surgery: Summary

- BMI of 35 or greater:
 - 20-40% lower rates of all-cause mortality vs. conventional weight-loss management over 7-15 yrs of follow-up
 - Reductions in body weight of 6-9 kg/m² over 1-2 yrs of follow-up
 - Moderate certainty of substantial net health benefit
- BMI of 30-34.9 and Type 2 diabetes
 - Nearly four-fold greater likelihood of resolution vs. conventional management over 1-2 yrs of follow-up (36-100% vs. 0-6%)
 - Suggestion of relatively high rates of relapse at 3-4 years
 - Moderate certainty of small or moderate net health benefit
- Insufficient evidence for BMI 30-34.9 without Type 2 diabetes

Bariatric Surgery: Summary (2)

- Head-to-head study:
 - RYGB vs. VSG: moderate certainty of comparable net health benefit
 - Limited comparative data for other procedures, and trends in the field suggest above comparison is the most relevant
- Insufficient evidence:
 - Adolescent populations
 - BMI <30

DEVICES

Maestro vBloc Device

- Only device of interest with FDA approval
- 2 RCTs, but only one of current-generation device*
 - N=239 (84% female; mean age 47; mean BMI 41)
 - Published data available for 12 months of follow-up; sham-controlled study
 - Excess weight loss (EWL): 24.4% vs. 15.9% for sham (p=.002)
 - Total weight loss: 10.9 kg vs. 7.3 kg for sham
 - Serious complications occurred in 6 (3.7%) device patients; 5 (3.1%) required device removal

Maestro vBloc Device: Summary

- Single RCT of current-generation device
- Modest improvement in excess weight loss vs. sham device, primary efficacy endpoint (10% greater EWL) not met
- Uncertainty regarding longer-term effectiveness and safety
- Low certainty of a small or comparable net health benefit

Intragastric Balloons

- No currently-approved balloon systems in US
- 7 studies (5 RCTs) but problematic evidence base:
 - Variability in balloon duration and # of placements
 - Inconsistent data on weight trends and follow-up after balloon removal
 - Early removal in up to 20% of patients
- Judgment: low certainty of comparable net benefit vs. conventional weight-loss management

EndoBarrier Device

- Not approved in US
- Two RCTs (n=114):
 - Mixed evidence on weight loss
 - Complications led to early device removal in majority of patients in one RCT
 - Ongoing RCT halted due to infection concerns
- Judgment: insufficient evidence on net health benefit vs. conventional weight-loss management

MEDICATIONS

Medications

- No head-to-head comparisons
- Most studies limited to 1 year of follow-up; some crossover data available at 2 years
- Network meta-analysis: no material differences in effectiveness or discontinuation due to adverse events (AEs)

Medications (2)

- Liraglutide (Saxenda):
 - 3 RCTs (n=~4,700*) showed 5-6% incremental weight loss vs. placebo or orlistat at 1-2 years of follow-up
 - Liraglutide 2-4 times more likely to achieve 5% or 10% weight loss than comparators (placebo or orlistat with lifestyle intervention)
 - GI distress most common side effect; discontinuation due to AEs in 7-9% of patients
- Lorcaserin (BELVIQ):
 - 3 RCTs (n=~4,600) showed 3-4% incremental weight loss vs. placebo/lifestyle intervention at 1 year
 - Lorcaserin 2-3 times more likely to achieve 5% or 10% weight loss than lifestyle intervention alone
 - Discontinuation due to AEs in 4-9% of patients

Medications (3)

- Naltrexone/Bupropion (N/B) (Contrave):
 - 4 RCTs (n=~4,500) showed 3-4% incremental weight loss vs. placebo at 56 weeks of follow-up
 - N/B 2-3 times more likely to achieve 5% and 10% weight loss than lifestyle intervention alone
 - Discontinuation due to AEs in 20-30% of patients
- Phentermine/Topiramate (P/T) (Qsymia):
 - 5 RCTs (n=~4,500) showed 6-7% incremental weight loss vs. placebo/lifestyle intervention at 6-12 months (8-10% for higher dose)
 - P/T 2-4 times more likely to achieve 5% or 10% weight loss than lifestyle intervention alone
 - Discontinuation due to AEs in 12-16% of patients (larger studies)

Medications: Summary

- Data from 14 RCTs across 4 medications
- All 4 drugs result in greater weight loss than lifestyle intervention alone, but benefits modest
 - Indicated for BMI 30+ or 27+ with obesity-linked comorbidities
 - Studies conducted in adults only
- Discontinuation due to AEs variable but not inconsequential
- Summary judgment: small net benefit, moderate certainty for all medications

Public Comments Received

- Goal of review should be to expand the treatment armamentarium
- Obesity is a chronic, relapsing, and remitting condition, and treatment should be evaluated in this light
- Variety of unpublished studies provided
- Clarity around BMI classes studied for each intervention of interest

Economic and Health-System Value Analysis

Dan Ollendorf, PhD
Chief Review Officer
Institute for Clinical and Economic Review

July 14, 2015

Economic Analysis Components

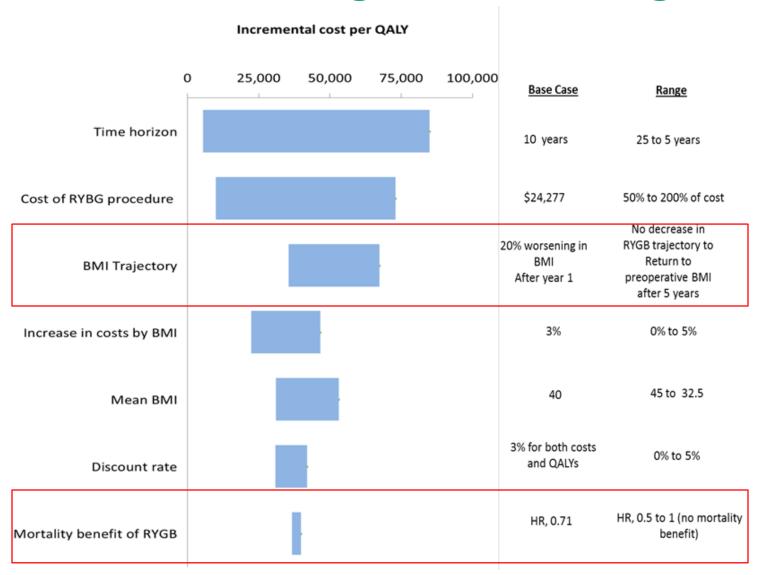
- Incremental costs per outcomes: ICER simulation model of 1- and 10-year costs and outcomes of:
 - Each bariatric surgical procedure
 - N/B pharmacotherapy (largest evidence base at recommended dose)
 - vBloc therapy (only FDA-approved device)
 - Drug/device used in sequence with surgery
- Health System Value:
 - Potential budgetary impact of extending bariatric surgery to a) all patients with BMI 30-34.9, and b) patients in this BMI class with diabetes

Incremental Cost per Outcomes: Methods

- All BMI ≥30 and broken down by class
- Universal comparator: conventional weight-loss management
- Outcome: Quality-adjusted life years (QALYs)
- Effectiveness driven by BMI reductions:
 - Mortality: changes driven by BMI reductions
 - 1-yr data from RCTs; further trajectory modeled using observational study data
 - Reduction in mortality with bariatric surgery: 30%
- QoL and costs based on data linked to BMI class
- Other costs (e.g., intervention, complications) from published sources

Incremental Costs per Outcomes: 1-Year Findings, BMI ≥30

Outcome/Cost	Standard Care	N/B	vBloc	RYGB	VSG	LAGB	BPD±DS	
	BMI ≥30							
Clinical Outcome	Clinical Outcome							
BMI loss (mean)	1.4	3.0	3.8	10.4	9.8	7.8	12.5	
Death (%)	1%	1%	1%	2%	2%	2%	2%	
Reoperation (%)	0%	0%	6%**	6%	3%	12%	7%	
Medical complication (%)	0%	0%	4%	11%	13%	2%	21%	
Costs (\$)								
Procedure	\$0	\$1,645	\$17,500	\$24,277	\$18,788	\$15,987	\$36,160	
Reoperation	\$0	\$0	\$710	\$787	\$402	\$1,478	\$893	
Other Complications*	\$3,710	\$3,710	\$4,364	\$5,035	\$5,167	\$4,570	\$5,925	
TOTAL	\$3,710	\$5,355	\$22,574	\$30,099	\$24,357	\$22,035	\$42,979	


^{*} Includes age-related background health care costs for obesity derived from Østbye 2014

^{** 5.6%} of vBloc patients assumed to have the device removed

Incremental Cost/QALY: 10-Year Findings, BMI ≥30

ВМІ		Effectiveness	Cost-effectiveness (\$/QALY gained)					
Level/Procedure	Cost (\$)	(QALYs)	vs. standard care	vs. RYGB				
BMI≥30								
Standard care	\$34,923	7.5680	N/A	Less expensive & less effective				
N/B	\$47,732	7.6656	\$131,250	Less expensive & less effective				
vBloc	\$51,471	7.7191	\$109,543	Less expensive & less effective				
RYGB	\$54,110	8.0807	\$37,423	N/A				
VSG	\$48,702	8.0417	\$29,087	Less expensive & less effective				
LAGB	\$47,668	7.9252	\$35,680	Less expensive & less effective				
BPD±DS	\$65,741	8.2307	\$46,508	\$77,574				

Sensitivity Analyses: RYGB vs. Conventional Weight-Loss Management

Treatment Sequencing

- Incremental cost-effectiveness of N/B continuation for patients achieving 5% or 10% weight loss, switch to RYGB for all others:
 - \$41,000 \$44,000 per QALY gained vs. conventional weight-loss management (vs. >\$130,000 for N/B alone)
- Incremental cost-effectiveness of vBloc continuation for patients achieving 10% weight loss, switch to RYGB for all others:
 - \$104,000 per QALY gained (vs. \$109,000 for vBloc alone)

Health-System Value: Methods

- Prevalence of BMI 30-34.9 in Medicaid: ~28%
 - 11% of these patients have diagnosed or undiagnosed diabetes
- Applied proportions to estimated number of adults enrolled in Medi-Cal: ~6.6 million
- One-year budgetary impact of adopting surgery based on difference in one-year costs between VSG (least expensive common surgical procedure) and conventional weight-loss management: ~\$21,000
- Applied to varying assumed percentages of surgical adoption, also included 10-year offsets

Health-System Value: Results

Measure	All Enrollees (11.7 million)	Adults with BMI 30-34.9 (25% Receive Surgery)	Adults with BMI 30-34.9 and diabetes (25% receive surgery)
One-Year Costs*			
Total Expenditures	\$77,500,800,000	\$9,325,884,204	\$1,025,847,262
PMPM	\$552	\$66.42	\$7.31
% Increase		12.03%	1.32%
One-Year Costs with Offset**			
Total Expenditures	\$77,500,800,000	\$7,420,688,730	\$816,275,760
PMPM	\$552	\$52.85	\$5.81
% Increase		9.57%	1.05%

^{*}Assumed one-year difference in cost between VSG and standard care of \$20,554

Insurance PMPM increase if 10% of candidate population receives surgery:

- 4.8% for all patients with BMI 30-34.9
- 0.5% for patients with diabetes and BMI 30-34.9

^{**}Adjusted one-year difference for downstream cost offsets of \$16,355

Public Comments Received: Model

- "Dollars per pound lost" measures have no place in critical analyses
- Consider FDA-approved labeling for model assumptions (e.g., discontinue medication if 5% weight loss not achieved)
- Incorporate adherence assumptions into model
- Many fewer patients opt for obesity treatment than assumed in health-system value analysis
- Include costs of lifetime follow-up care post-surgery

Summary

- Findings from incremental cost per outcomes analysis similar to other published models for bariatric surgery
 - Surgery falls within generally-accepted cost-effectiveness thresholds vs. conventional weight-loss management
 - Most favorable results seen in highest BMI class
- Incremental costs per outcomes of medicationbased treatment most favorable when assessed in sequence with surgery
- Potential budgetary impact of expanding bariatric surgery to all patients with BMI 30-34.9 is substantial but less pronounced when limited to patients in this class with diabetes

Controversies in Obesity Management

Questions for Deliberation

July 14, 2015

Comparative *Clinical Effectiveness* **Example Question**

Is the evidence "adequate" to demonstrate that "intervention A" is superior to "comparator B" for patients with "condition X"?

Yes

Care Value Example Question

From the perspective of a Medicaid program, what is the care value of "intervention A" vs "comparator B"?

- A. Low
- **B.** Intermediate
- c. High

Comparative Clinical Effectiveness Incremental Cost per Outcomes Achieved

Additional Benefits

Contextual Considerations

Care Value

Health System Value Example Question

Assuming baseline pricing and payment mechanisms, what would be the **health system value** of "**intervention A**" for a state Medicaid program?

- A. Low
- **B.** Intermediate
- c. High

Care Value

Managing Affordability

Health System Value

Practice Question

What is your favorite professional basketball team?

- A. Cleveland Cavaliers
- **B.** Cleveland Cavaliers
- c. Cleveland Cavaliers
- D. Golden State Warriors

Bariatric Surgery: BMI 30.0-34.9, T2DM

Q1. For adult patients with a BMI of 30.0-34.9 and Type 2 diabetes, is the evidence adequate to demonstrate that the net health benefit of bariatric surgery is greater than that of conventional weightloss management?

Yes

Bariatric Surgery: BMI 30.0-34.9

Q2. For adult patients with a BMI of 30.0-34.9 who do not have Type 2 diabetes, is the evidence adequate to demonstrate that the net health benefit of bariatric surgery is greater than that of conventional weight-loss management?

Yes

RYBG and VSG: BMI ≥35

Q3. For adult patients with a BMI ≥35, is the evidence adequate to demonstrate that *RYGB* and *VSG* have a comparable net health benefit?

Yes

Maestro vBloc: BMI ≥35

Q4. For adult patients with a BMI ≥35, is the evidence adequate to demonstrate that the net health benefit of the Maestro vBloc system is greater than that of conventional weight-loss management?

Yes

Drugs: BMI ≥30 or BMI ≥27 w/ comorbidity

Q5. For adult patients with a BMI ≥30 or BMI ≥27 with an obesity-related comorbidity, is the evidence adequate to distinguish the net health benefit among the four drugs reviewed?

Yes

Care Value: Bariatric Surgery, BMI 30.0-34.9, T2DM

- Q6. [If yes to question 1– adult patients with a BMI 30.0-34.9, and Type 2 diabetes] Given the available evidence, what is the care value of bariatric surgery vs. conventional weight-loss management?
 - A. Low
 - **B.** Intermediate
 - c. High

Comparative Clinical Effectiveness Incremental Cost per Outcomes

Achieved

Additional Benefits Contextual Considerations

Care Value

Health System Value: Bariatric Surgery, BMI 30.0-34.9, T2DM

- Q7. [If yes to question 1] Given the available evidence, what is the overall health system value of bariatric surgery for a state Medicaid program?
 - A. Low
 - **B.** Intermediate
 - c. High

Care Value

Managing Affordability

Health System Value

Care Value: Bariatric Surgery, BMI 30.0-34.9

- Q8. [If yes to question 2 adult patients with a BMI 30.0-34.9, who do not have Type 2 diabetes] Given the available evidence, what is the care value of bariatric surgery vs. conventional weight-loss management?
 - A. Low
 - **B.** Intermediate
 - c. High

Comparative Clinical Effectiveness Incremental Cost per Outcomes

Achieved

Additional Benefits

Contextual Considerations

Care Value

Health System Value: Bariatric Surgery, BMI 30.0-34.9

- Q9. [If yes to question 2] Given the available evidence, what is the overall health system value of bariatric surgery for a state Medicaid program?
 - A. Low
 - **B.** Intermediate
 - c. High

Care Value

Managing Affordability

Health System Value

Care Value: Maestro vBloc, BMI ≥35

Q10. [If yes to question 4 – adult patients with a BMI ≥35] Given the available evidence, what is the care value of the Maestro vBloc system vs. conventional weight-loss management?

- A. Low
- **B.** Intermediate
- c. High

Comparative Clinical Effectiveness Incremental Cost per Outcomes

Achieved

Additional Benefits

Contextual Considerations

Care Value

Health System Value: Maestro vBloc, BMI ≥35

Q11. [If yes to question 4] Given the available evidence, what is the overall health system value of the Maestro vBloc system for a state Medicaid program?

- A. Low
- **B.** Intermediate
- c. High

Care Value

Managing Affordability

Health System Value

Policy Roundtable Participants

- Joel Brill, MD, FACP, Medical Director, FAIR Health Inc., Chief Medical Officer, Predictive Health, LLC
- Alexander Li, MD, Deputy Director, Care Transitions, Los Angeles Department of Health Services
- John Morton, MD, MPH, FACS, FASMBS, Chief of Bariatric and Minimally Invasive Surgery, Stanford University School of Medicine; President, American Society for Metabolic and Bariatric Surgery
- Sameer Murali, MD, MSHS, Bariatric/Internal Medicine, Southern California Permanente Medical Group
- Philippe Jean Quilici, MD, FACS, Attending Physician, Department of Surgery, Providence St. Joseph Medical Center and Cedars-Sinai Medical Center
- Michelle Vicari, Patient Advocate
- John Yao, MD, MBA, MPH, MPA, FACP, Staff Vice President of Medical Policy, Anthem