

# Crizanlizumab, Voxelotor, and L-Glutamine for Sickle Cell Disease: Effectiveness and Value

**Draft Evidence Report** 

January 23, 2020

**Prepared for** 



| ICER Staff                        | University of Calgary                                               |
|-----------------------------------|---------------------------------------------------------------------|
| Pamela Bradt, MD, MPH             | Eldon Spackman, PhD                                                 |
| Chief Scientific Officer          | Assistant Professor                                                 |
| ICER                              | Community Health Sciences & O'Brien Institute of Public Health      |
|                                   | University of Calgary                                               |
| Patricia Synnott, MALD, MS        |                                                                     |
| Director, Evidence Review         |                                                                     |
| ICER                              |                                                                     |
|                                   |                                                                     |
| Rick Chapman, PhD, MS             |                                                                     |
| Director of Health Economics      |                                                                     |
| ICER                              |                                                                     |
| Serina Herron-Smith, BA           |                                                                     |
| Research Assistant                |                                                                     |
| ICER                              |                                                                     |
| ICEN                              |                                                                     |
| Avery McKenna, BS                 |                                                                     |
| Research Assistant                |                                                                     |
| ICER                              |                                                                     |
|                                   |                                                                     |
| Molly Beinfeld, MPH               |                                                                     |
| Research Lead, Evidence Synthesis |                                                                     |
| ICER                              |                                                                     |
|                                   |                                                                     |
| David M. Rind, MD, MSc            |                                                                     |
| Chief Medical Officer             |                                                                     |
| ICER                              | The role of the University of Calgary is limited to the development |
| Steven D. Pearson, MD, MSc        | of the cost-effectiveness model, and the resulting ICER reports do  |
| President                         | not necessarily represent the views of the University of Calgary.   |
| ICER                              |                                                                     |
| ICEN                              |                                                                     |

None of the above authors disclosed any conflicts of interest.

**How to cite this document:** Bradt P, Spackman E, Synnott P, Chapman R, Rind D M, Pearson S. Crizanlizumab, Voxelotor, and L-Glutamine for Sickle Cell Disease: Effectiveness and Value. Institute for Clinical and Economic Review, January 23, 2020. <a href="https://icer-review.org/material/sickle-cell-disease-draft-evidence-report/">https://icer-review.org/material/sickle-cell-disease-draft-evidence-report/</a>

#### **DATE OF PUBLICATION**: January 23, 2020

Pamela Bradt served as the lead author for the report. Patricia Synnott led the systematic review and authorship of the comparative clinical effectiveness section in collaboration with Serina Herron-Smith and Avery McKenna. Eldon Spackman was responsible for the development of the cost-effectiveness model. Rick Chapman was responsible for oversight of the cost-effectiveness analyses and developed the budget impact model. Catherine Koola authored the section on coverage policies. David Rind and Steve Pearson provided methodologic guidance on the clinical and economic evaluations. We would also like to thank Foluso Agboola, Molly Beinfeld, and Monica Frederick for their contributions to this report.

#### **About ICER**

The Institute for Clinical and Economic Review (ICER) is an independent non-profit research organization that evaluates medical evidence and convenes public deliberative bodies to help stakeholders interpret and apply evidence to improve patient outcomes and control costs. Through all its work, ICER seeks to help create a future in which collaborative efforts to move evidence into action provide the foundation for a more effective, efficient, and just health care system. More information about ICER is available at <a href="http://www.icer-review.org">http://www.icer-review.org</a>.

The funding for this report comes from government grants and non-profit foundations, with the largest single funder being the Laura and John Arnold Foundation. No funding for this work comes from health insurers, pharmacy benefit managers, or life science companies. ICER receives approximately 19% of its overall revenue from these health industry organizations to run a separate Policy Summit program, with funding approximately equally split between insurers/PBMs and life science companies. Life science companies relevant to this review who participate in this program include Novartis. For a complete list of funders and for more information on ICER's support, please visit http://www.icer-review.org/about/support/.

#### **About the New England CEPAC**

The New England Comparative Effectiveness Public Advisory Council (New England CEPAC) — a core program of ICER — provides a public venue in which the evidence on the effectiveness and value of health care services can be discussed with the input of all stakeholders. The New England CEPAC seeks to help patients, clinicians, insurers, and policymakers interpret and use evidence to improve the quality and value of health care.

The New England CEPAC Council is an independent committee of medical evidence experts from across New England, with a mix of practicing clinicians, methodologists, and leaders in patient engagement and advocacy. All Council members meet strict conflict of interest guidelines and are convened to discuss the evidence summarized in ICER reports and vote on the comparative clinical effectiveness and value of medical interventions. More information about the New England CEPAC is available at <a href="https://icer-review.org/programs/new-england-cepac/">https://icer-review.org/programs/new-england-cepac/</a>.

The findings contained within this report are current as of the date of publication. Readers should be aware that new evidence may emerge following the publication of this report that could potentially influence the results. ICER may revisit its analyses in a formal update to this report in the future.

The economic models used in ICER reports are intended to compare the clinical outcomes, expected costs, and cost-effectiveness of different care pathways for broad groups of patients. Model results therefore represent average findings across patients and should not be presumed to represent the clinical or cost outcomes for any specific patient. In addition, data inputs to ICER models often come from clinical trials; patients in these trials and provider prescribing patterns may differ in real-world practice settings.

In the development of this report, ICER's researchers consulted with several clinical experts, patients, manufacturers and other stakeholders. The following clinical experts provided input that helped guide the ICER team as we shaped our scope and report. None of these individuals is responsible for the final contents of this report or should be assumed to support any part of this report, which is solely the work of the ICER team and its affiliated researchers.

For a complete list of stakeholders from whom we requested input, please visit: https://icer-review.org/material/sickle-cell-disease-stakeholder-list/

#### **Expert Reviewers**

#### Ashley Valentine, MRes Co-Founder of Sick Cells

Consultant for Emmaus Life Sciences, CRISPR Therapeutics, and Community Patient Advisory Board for Global Blood Therapeutics. Sick Cells receives sponsorship and advocacy grants from various industry partners.

# Julie Kanter, MD Director of Adult Sickle Cell Disease Program University of Alabama Birmingham

Dr. Kanter has consulted for both Novartis Pharmaceuticals and Global Blood Therapeutics, and has received in excess of \$5,000 of honoraria from each company through service on advisory boards and travel support. She is serving on steering committees for both of the Novartis SOLACE trials of crizanlizumab. Her organization has received research funding for participation on trials of crizanlizumab, voxelotor, and L-glutamine for which she is the Site Principal Investigator.

#### Keith Quirolo, MD

Former Director of Pediatric Sickle Cell Program
Former Clinical Director of Apheresis Program
UCSF Benioff Children's Hospital Oakland

No relevant conflicts of interest to disclose, defined as more than \$10,000 in health care company stock or more than \$5,000 in honoraria or consultancies during the previous year from health care manufacturers or insurers.

Ahmar Zaidi, MD
Comprehensive Sickle Cell Program
Assistant Professor of Pediatrics
Wayne State University School of Medicine
Central Michigan University School of Medicine
Children's Hospital of Michigan

Dr. Zaidi reports grants and personal fees from Emmaus Life Sciences, grants, personal fees and speaker bureau affiliation from Global Blood Therapeutics, and personal fees from Novartis.

# **Table of Contents**

| 1. Introduction                                          | 8          |
|----------------------------------------------------------|------------|
| 1.1 Background                                           | 8          |
| 1.2 Scope of the Assessment                              | 11         |
| 1.3 Definitions                                          | 15         |
| 1.4 Potential Cost-Saving Measures in SCD                | 16         |
| 2. Patient Perspectives                                  | 17         |
| An All-Encompassing Condition                            | 17         |
| Stigma and Limitations on Daily Life                     | 18         |
| Racial Bias                                              | 19         |
| Lack of Specialists & Competent Treatment                | 21         |
| Attitude toward New Therapies                            | 22         |
| SCD Patient and Caregiver Survey                         | 23         |
| 3. Summary of Coverage Policies and Clinical Guidelin    | nes24      |
| 3.1 Coverage Policies                                    | 24         |
| 3.2 Clinical Guidelines                                  | 26         |
| 4. Comparative Clinical Effectiveness                    | 28         |
| 4.1 Overview                                             | 28         |
| 4.2 Methods                                              | 28         |
| 4.3 Results                                              | 30         |
| 4.4 Summary and Comment                                  | 54         |
| 5. Long-Term Cost Effectiveness                          | 58         |
| 5.1 Overview                                             | 58         |
| 5.2 Methods                                              | 59         |
| 5.3 Results                                              | 76         |
| 5.4 Summary and Comment                                  | 92         |
| 6. Potential Other Benefits and Contextual Consideration | erations94 |
| 6.1 Potential Other Benefits                             | 95         |
| 6.2 Contextual Considerations                            | 96         |
| 7. Value-Based Price Benchmarks                          | 98         |

| 8. Potential Budget Impact                                              | 99   |
|-------------------------------------------------------------------------|------|
| References                                                              | .100 |
| Appendix A. Search Strategies and Results                               | .108 |
| Appendix B. Previous Systematic Reviews and Technology Assessments      | .113 |
| Appendix C. Ongoing Studies                                             | .115 |
| Appendix D. Comparative Clinical Effectiveness Supplemental Information | .122 |
| Appendix E. Comparative Value Supplemental Information                  | .149 |
| Appendix F. Real World Evidence Final Protocol                          | .155 |

#### **List of Acronyms Used in this Report**

ΑE Adverse event

**ACS** Acute chest syndrome AKI Acute kidney injury BPI **Brief Pain Inventory** CI Confidence interval CKD Chronic kidney disease

Centers for Medicare and Medicaid Services **CMS** 

**Emergency department** ED Food and Drug Administration **FDA GDP** Gross domestic product

HB Hemoglobin HR Hazard ratio **IQR** Interquartile range ITT Intent-to-Treat LS least squares LY Life year

Major complications and comorbidities MCC

Myocardial Infarction MI

National Institute for Health and Care Excellence **NICE** 

No. Number NS Not significant NR Not reported

**PICOTS** Population, Interventions, Comparisons, Outcomes, Timing, Setting, and Study Design

Preferred Reporting Items for Systematic Reviews and Meta-Analyses **PRISMA** 

Quality-adjusted life year **QALY** 

QOL Quality of life

RCT Randomized controlled trial SAE Serious adverse event SCD Sickle cell disease

SF-36 36-Item Short Form Survey

TEAE Treatment-emergent adverse event

US **United States** 

USPSTF United States Preventive Services Task Force

VOC Vaso-Occlusive Crisis WAC Wholesale acquisition cost

# 1. Introduction

# 1.1 Background

Sickle cell disease (SCD) is a broad term referring to a group of inherited disorders carried by the beta ( $\beta$ ) allele of the hemoglobin (Hb) gene. It is characterized by abnormal hemoglobin polymerization during deoxygenation resulting in sickle-shaped erythrocytes (red blood cells [RBCs]). SCD includes the genotypes HbSS, as well as the compound heterozygous genotypes HbS $\beta^0$  thalassemia, HbSC, HbSD, and HbS $\beta^+$  thalassemia.<sup>2</sup> The genotypes HbSS and HbS $\beta^0$  thalassemia have similar clinical characteristics and together are frequently referred to as sickle cell anemia. Conversely, the heterozygous state with one normal gene and one Hb S gene (HbAS) is the carrier state and is referred to as "sickle cell trait". Sickle cell trait usually does not have clinical manifestations and confers protection against plasmodium falciparum malaria.<sup>3</sup>

Clinical manifestations of SCD derive from at least three different pathophysiologic mechanisms: the loss of deformability of the RBC leading to vascular obstruction and ischemia; a shortened lifespan of the RBC leading to both intravascular and extravascular hemolysis; a sticky RBC surface increasing adherence to the vascular endothelium which can result in vascular obstruction and can contribute to vascular proliferative lesions.<sup>4</sup>

Rates of SCD and sickle cell trait vary considerably by geography with the highest rates found in populations arising from areas where, historically, resistance to plasmodium falciparum malaria conferred a survival advantage.<sup>3</sup> These include equatorial Africa, Brazil, Saudi Arabia and central India. The incidence of SCD is estimated at 300,000 to 400,000 live births globally per year. In the United States (US), the current best prevalence estimate is approximately 100,000 individuals with SCD, although comprehensive surveillance and reporting is lacking and the exact number of cases in the US is unknown.<sup>5</sup>

A marked decrease in mortality in infancy occurred in the US from 1979-2006, presumably due to the implementation of universal newborn screening, penicillin prophylaxis, and the use of conjugated pneumococcal vaccine.<sup>5</sup> During that same time, peak mortality shifted from the middle third decade of life to the late fourth decade of life with the mean age of death being 39 years.<sup>6</sup> Despite improved survival, life expectancy continues to be 20-30 years less than the US general population.<sup>5</sup>

Recurrent acute pain crisis, or vaso-occlusive crisis (VOC), is the most prevalent manifestation of SCD. An understanding of the pathophysiology of acute pain crises continues to evolve with recent models focused on the complex cascade of inflammation, adherence of leukocytes, and blood flow obstruction. The management of acute pain crises is extremely important in patients with SCD yet is often misunderstood or inadequately addressed across all health care settings.<sup>2</sup>

In addition to acute pain crises, patients experience significant acute and chronic morbidity over time. Acute complications include serious infections such as meningitis, osteomyelitis, and sepsis, and non-infectious complications such as stroke, renal necrosis, and priapism.<sup>7</sup> Acute chest syndrome (ACS) is a potentially life-threatening complication that can involve chest pain and shortness of breath among other symptoms; some episodes of ACS are triggered by infection.<sup>8</sup> Chronic complications can emerge across multiple organs and include delayed puberty, avascular necrosis, skin ulcers, chronic pain, neurocognitive impairment, chronic kidney injury, pulmonary hypertension, cardiovascular disease, and can result in early mortality.<sup>7</sup> Individuals with SCD face ongoing and evolving lifelong difficulties as a result of their disease. As their bodies grow, develop, and age, new problems can emerge while intermittent and persistent vaso-occlusion/ischemia produce an accumulation of injuries over time.<sup>3</sup> Resultant health care costs are high, with the total health system economic burden of SCD estimated at \$2.98 billion per year in the US with 57% due to inpatient costs, 38% due to outpatient costs, and 5% due to out-of-pocket costs.<sup>9</sup>

Our understanding of the relationship of hemoglobin levels and ongoing hemolysis, to acute and chronic morbidity and survival continues to evolve. Low hemoglobin levels have been associated with fatigue, silent cerebral infarct, pulmonary hypertension, kidney disease, and mortality. <sup>10-13</sup>. More recently, the clinical manifestations and risk of mortality have been linked to the degree of intravascular hemolysis and the release of lysed erythrocyte byproducts. <sup>14,15</sup> In fact some of the heterogeneity in the phenotypic expression of SCD is now being attributed to subphenotypes with some patients expressing more hemolytic anemia related manifestations of the disease and others more vaso-occlusive morbidities. The interrelationship of anemia related morbidity and VOC related morbidity remains unclear. Nonetheless, future individualized care plans will undoubtedly incorporate this level of specificity as new information continues to emerge.

The impact of SCD on quality of life (QOL) is complex and affects both patients and their caregivers in many ways. In addition to the health-related burden of disease many other factors further diminish QOL. The lack of treatment options, discrimination, stigma around the need for chronic pain management, disruption of family and social activities, missed school and/or work all combine to make living with SCD extraordinarily difficult. Children worry about dying early from the disease. Pain and fatigue limit their ability to perform well in school and maintain relationships with friends. They feel the impact of chronic pain, daily fatigue, and emotional distress, and often recognize that they are not able to live a normal life like their friends. As children mature, they often carry the same concerns as in childhood with the addition of mobility issues, difficulty managing work and careers, difficulty caring for themselves and their families, and ongoing concerns about the progression of their disease. SCD is a lifelong, all-encompassing, biopsychosocial condition, that constitutes one of the most difficult of all chronic illnesses for patients and their families.

#### **Treatment for SCD**

Despite many dedicated caregivers and clinicians across the US, the picture of "baseline" or "usual" care for patients with SCD is highly variable and represents a failure of the US health care system. Deep dysfunction in care is driven by poor coordination within provider systems and by barriers to access that arise from a broad range of factors including systemic racism, uninformed clinicians, poverty, and insurance systems poorly designed to coordinate coverage for patients with multisystem chronic conditions. Upon that background of poor performance in service of patients with SCD, innovation in specific disease-modifying treatments has also been lacking for several decades. Until recently only three specific interventions were considered helpful for SCD: stem cell transplantation, chronic transfusion with packed RBCs, and hydroxyurea. While stem cell transplant engraftment rate is dependent upon the degree of myeloablation, it can result in the complete replacement of abnormal hemoglobin with completely normalized hemoglobin and resolve hemolysis. Unfortunately, the degree of myeloablation required and the availability of matched donors limit its use. Chronic transfusion is generally used for primary or secondary stroke prevention; hydroxyurea is used to reduce the number of acute pain crises in those with frequent or severe crises, and in those with a history of ACS or severe anemia.<sup>2</sup> Acute pain crisis may be managed with pain medications including opioids, and may require additional inpatient or outpatient treatments including hydration, transfusion, supplemental oxygen, and a variety of other treatments.2

Within the past several years several new options have gained regulatory approval in the US Table 1.1). L-glutamine supplementation is used to decrease the frequency of acute pain crises. <sup>16</sup> It was approved by the US Food and Drug Administration (FDA) on July 7, 2017 to reduce the acute complications of SCD in adult and pediatric patients 5 years of age and older. Crizanlizumab (Novartis AG), is a humanized monoclonal antibody that binds to P-selectin. <sup>17</sup> It was approved by the FDA on November 15, 2019 to reduce the frequency of vaso-occlusive crises in adults and pediatric patients aged 16 years and older with SCD. It is administered intravenously in two loading doses two weeks apart and then every four weeks thereafter. Voxelotor (Global Blood Therapeutics, Inc.) is an HbS polymerization inhibitor that reversibly binds to hemoglobin to stabilize the oxygenated hemoglobin state, thus shifting the oxyhemoglobin dissociation curve. <sup>18</sup> Voxelotor was approved by the FDA on November 25, 2019 for the treatment of SCD in adults and pediatric patients 12 years of age and older.

Table 1.1. Recently Approved Therapies for SCD

|                                                      | Date of FDA<br>Approval | FDA Indication                                                                                                                                 | FDA Dosage                                                                                                            | WAC                                                                      | Cost per<br>Year* |
|------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|
| Crizanlizumab<br>(Adakveo®)                          | 11/15/2019              | Indicated to reduce<br>the frequency of<br>vaso-occlusive crises<br>in adults and<br>pediatric patients<br>aged 16 years and<br>older with SCD | Administer 5<br>mg/kg (IV) over a<br>period of 30<br>minutes on week<br>0, week 2, and<br>every 4 weeks<br>thereafter | \$2,357.14 per<br>10ml package                                           | \$107,700         |
| Voxelotor<br>(Oxbryta™)                              | 11/25/2019              | Indicated for the treatment of SCD in adults and pediatric patients 12 years of age and older.                                                 | 1,500 mg orally<br>once daily with or<br>without food                                                                 | \$10,417.00<br>per 90<br>packages<br>115.74 per<br>one 500mg<br>package) | \$104,357         |
| Pharmaceutical<br>grade L-<br>Glutamine<br>(Endari®) | 7/7/2017                | Indicated to reduce<br>the acute<br>complications of SCD<br>in adult and pediatric<br>patients 5 years of<br>age and older                     | 5 – 15 grams<br>orally, twice daily<br>based on body<br>weight                                                        | \$18.50 per<br>5gm package                                               | \$26,082          |

IV: intravenous, SCD: sickle cell disease, WAC: wholesale acquisition cost

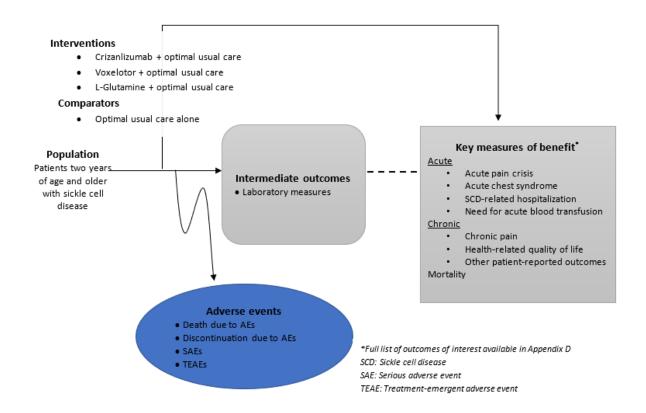
WAC per Redbook® accessed on December 17, 2019

# 1.2 Scope of the Assessment

Two new therapies and one relatively new therapy have become available for patients with SCD. Questions on the impact of these therapies on both acute and chronic complications of SCD along with long term safety remain. Further, the alignment of costs with potential patient benefits for these new therapies is unclear. This assessment evaluates the clinical effectiveness and cost effectiveness of crizanlizumab, voxelotor, and pharmaceutical-grade L-glutamine for patients with SCD.

The scope for this assessment is described on the following pages using the Population, Intervention, Comparators, Outcomes, Timing, and Settings (PICOTS) framework. Evidence was abstracted from randomized controlled trials (RCTs) and nonrandomized studies as well as high quality systematic reviews; high-quality comparative cohort studies were considered, particularly for long-term outcomes and uncommon AEs. Our evidence review includes input from patients and patient advocacy organizations, data from regulatory documents, information submitted by manufacturers, and other grey literature when the evidence met ICER standards (for more

<sup>\*</sup>Based on a 26-27% discount off WAC


information, see <a href="https://icer-review.org/methodology/icers-methods/icer-value-assessmentframework/grey-literature-policy/">https://icer-review.org/methodology/icers-methods/icer-value-assessmentframework/grey-literature-policy/</a>).

All relevant evidence was summarized qualitatively. We sought head-to-head studies of the interventions and comparators of interest. Full details regarding the literature search, screening strategy, data extraction, and evidence synthesis were provided in a research protocol published on the Open Science Framework website (https://osf.io/7awvd/).

#### **Analytic Framework**

The general analytic framework for assessment of therapies for SCD is depicted in Figure 1.1.

Figure 1.1. Analytic Framework: Crizanlizumab, L-Glutamine, and Voxelotor for SCD



AEs: adverse events, SAE: serious adverse event, SCD: sickle cell disease, TEAE: treatment emergent adverse event

The diagram begins with the population of interest on the left. Actions, such as treatment, are depicted with solid arrows which link the population to outcomes. For example, a treatment may be associated with specific health outcomes. Outcomes are listed in the shaded boxes; those within the rounded boxes are intermediate outcomes (e.g., laboratory measures), and those within

the square boxes are key measures of benefit (e.g., acute pain crisis). The key measures of benefit are linked to intermediate outcomes via a dashed line, as the relationship between these two types of outcomes may not always be validated. Curved arrows lead to the AEs of an action (typically treatment), which are listed within the blue ellipse.

#### **Populations**

The population of focus for this review is children and adults, two years of age and older, who have been diagnosed with SCD. Where data were available, we examined evidence for key subgroups suggested by clinical experts, including the following:

- Age
- Hydroxyurea use
- Use of chronic transfusions
- Sickle cell genotype
- Frequency of acute pain crises

#### Interventions

The interventions of interest for this review are listed below:

- Crizanlizumab (Adakveo®; Novartis AG) in addition to optimal usual care (e.g., hydroxyurea, transfusions)
- Voxelotor (Oxbryta™; Global Blood Therapeutics, Inc.) in addition to optimal usual care (e.g., hydroxyurea, transfusions)
- Prescription-grade formulations of L-Glutamine (e.g., Endari®; Emmaus Medical, Inc.) in addition to optimal usual care (e.g., hydroxyurea, transfusions)

#### **Comparators**

Evidence will be sought to compare each intervention to optimal "usual" care as provided in clinical trials. For context, we will seek evidence on how the usual care provided in the trials differs from the real-world usual care experienced by many/most patients with SCD. We are not seeking to compare the clinical effectiveness of the three new interventions directly to each other given differences in patient populations and outcome measures, but we will create a common population for economic modeling in order to provide all stakeholders with the ability to compare long-term cost-effectiveness.

#### **Outcomes**

This review examines key measures of benefit and safety associated with SCD, including, but not limited to, the outcomes listed below. Additional outcomes of interest, including intermediate and

surrogate endpoints, are listed in Appendix D and were captured when evidence on such outcomes was identified.

#### **Acute Outcomes**

- Acute pain crisis
- Acute chest syndrome
- Acute myocardial infarction (MI)
- Stroke
- Acute kidney injury/Renal infarction
- Iron overload
- Splenic sequestration
- Priapism
- Change in hemoglobin
- Need for blood transfusion
- Quality of Life
- Hospitalization
- Mortality
- Change in hemolysis markers

#### **Chronic Outcomes**

- Pulmonary hypertension
- Heart failure
- Opioid tolerance/dependence
- Nephropathy/CKD
- Chronic chelation therapy
- Chronic pain
- Fatigue
- Other organ damage
- Neurocognitive dysfunction
- Mental health effects (e.g., depression, anxiety)
- Mortality

#### Safety

- Serious adverse events (SAE)
- AEs leading to discontinuation
- Treatment-emergent adverse events (TEAE)

#### **Timing**

Evidence on intervention effectiveness and evidence on harms was derived from studies of any duration.

#### Settings

All relevant settings were considered, with a focus on outpatient settings in the US.

#### 1.3 Definitions

Acute Chest Syndrome (ACS)<sup>19</sup>: defined as a new radiodensity on chest radiography accompanied by fever and/or respiratory symptoms. ACS in adults with SCD requires prompt management to prevent clinical deterioration.

Acute Hepatic Sequestration<sup>20</sup>: patients with hepatic sequestration usually present with right upper quadrant pain, rapidly increasing hepatomegaly, and a falling hematocrit. Treatment of hepatic sequestration crisis involves prompt, aggressive restoration of blood volume. Typically, simple transfusion therapy is sufficient because the goal is to increase the hemoglobin to a level where the patient no longer has evidence of symptomatic anemia.

Acute Kidney Injury/Renal Infarction<sup>21</sup>: a condition resulting from a sudden disruption of blood flow to the renal artery. This may cause irreversible damage to kidney tissues.

Chronic Kidney Disease (Nephropathy): defined in trials as either having a glomerular filtration rate (GFR) of less than 60ml/min/1.73 m<sup>2</sup> for greater than or equal to 3 months with or without kidney damage or having evidence of kidney damage for greater than or equal to 3 months, with or without decreased GFR, manifested by either pathologic abnormalities or markers of kidney damage independent of cause.

Chronic Sickle Cell Pain: pain that does not resolve and lasts for more than 3 months.

HbSβ<sup>0</sup> thalassemia<sup>22</sup>: occurs in patients who inherit one sickle cell gene and one beta thalassemia gene that results in no production of HbA.

HbSβ+ thalassemia<sup>22</sup>: occurs in patients who inherit one sickle cell gene and one beta thalassemia gene resulting in reduced production of HbA.

**HbSC:** sickle cell hemoglobin C disease

HbSD, HbSE and HbSO<sup>22</sup>: one inherited sickle cell gene ("S") and one gene from an abnormal type of hemoglobin ("D", "E" or "O").

**HbSS:** homozygous sickle cell disease.

**Opioid Tolerance**<sup>23</sup>: occurs when a person using opioids begins to experience a reduced response to medication, requiring more opioids to experience the same effect.

**Opioid Dependence<sup>23</sup>:** occurs when the body adjusts its normal functioning around regular opioid use. Unpleasant physical symptoms occur when medication is stopped.

**Pulmonary Arterial Hypertension (PAH)**<sup>24</sup>: an elevation of pulmonary arterial systolic pressure (PASP) (greater than 20 mmHg at rest or greater than 30 mmHg with exercise) determined by right heart catheterization.

**Vaso-occlusive Crisis (VOC):** pain as a result of decreased blood flow in the microcapillaries (can include blood vessel blockage) resulting in tissue ischemia, occurring most commonly in bone or bone marrow. VOC's are also known as vaso-occlusive episodes or acute pain crises.

#### 1.4 Potential Cost-Saving Measures in SCD

ICER now includes in its reports information on wasteful or lower-value services in the same clinical area that could be reduced or eliminated to create headroom in health care budgets for higher-value innovative services (for more information, see <a href="https://icer-review.org/final-vaf-2017-2019/">https://icer-review.org/final-vaf-2017-2019/</a>). These services are ones that would not be directly affected by therapies for SCD (e.g., reduction in acute pain crises), as these services will be captured in the economic model. Rather, we are seeking services used in the current management of SCD beyond the potential offsets that arise from a new intervention. During stakeholder engagement and public comment periods, ICER encourages all stakeholders to suggest services (including treatments and mechanisms of care) currently used for patients with SCD that could be reduced, eliminated, or made more efficient. To date, no suggestions have been received.

# 2. Patient Perspectives

# **An All-Encompassing Condition**

"SCD is long overdue for a treatment and cure. It is buried in years of racial discrimination and to this day health care professionals treat based on assumptions not science. We need new drugs and treatments. [It's] about time we matter."

Patients, family members, clinicians, and other members of the sickle cell community conveyed that it is hard to imagine a condition that ravages people's lives more than SCD. It is a danger to minimize the impact of the condition by reducing it to pain crises, or even to the better known acute and chronic organ effects. Pain crises are, of course, horrible to experience, and their accumulated impact over many years has effects on mental health as well as the potential risks associated with opioid treatment. In addition, the range of acute adverse effects of the condition includes almost every organ system, with strokes, ACS, and other life-threatening events a constant threat. These acute effects contribute to long-term risks for additional major organ dysfunction such as congestive heart failure and liver failure.

But while these acute and long-term clinical harms are legion, patients and others emphasize that there is truly an all-encompassing biopsychosocial impact of SCD that is hard to capture, even by adding up one by one the multitude of organ system effects. There is fatigue, there is anxiety and depression, there is a hopelessness that has haunted patients with SCD. The condition presents challenges at home, school, work, and social relationships. People with SCD often end up on formal disability programs, which unfortunately carries its own stigma. The cumulative effect of all these effects can be staggering.

"SCD is extremely unpredictable, even for the most aware patient. There is such a stigma that I feel from having this disease, wanting to do so much and contributing to society and yet I am limited from achieving many of my hopes and dreams."

This is not to say that people with SCD are unable to function at a high level in society, but that the challenges and the barriers are extraordinary. One of the most important perspectives we learned from the SCD patient community and clinicians was that SCD remains a misunderstood, marginalized, condition. To fully appreciate the potential benefits of new treatments, a broad

appreciation for the impact of SCD on the lives of patients and their families must be achieved and must be kept front and center when making judgments about the value of these treatments.

# Stigma and Limitations on Daily Life

Patients with SCD may appear healthy. An outward appearance of wellbeing can present additional barriers to appropriate care and contribute to social stigmas surrounding the disease. A general lack of awareness about the disease among nurses, hospitalists, and society at large means that

"Day to day is hard. [We] are in pain a lot and our energy levels are low. We just want to be treated like the next. We are not lazy, we want fairness."

healthy-looking patients suffering from an acute pain crisis, ACS, or other SCD-related complication may not be taken seriously. Patients presenting at the ER may be made to wait longer before receiving attention. One particularly jarring anecdote that was recorded in the FDA's *Voice of the Patient* report described a child who was sent back to class by the school nurse after suffering a silent infarct because he was "deemed unruly."<sup>25</sup> We also heard patient testimony of young men being called perverts because they were experiencing priapism.

The appearance of health, coupled with a lack of SCD awareness in patients' broader communities, can lead to ignorant judgments of character. Patients who are unable to participate in their daily commitments at work or school due to unsurmountable fatigue, pain, or other complications, may be accused of laziness or be subject to bullying. Both children and their caregivers felt SCD

"My son feels very isolated by sickle cell, and I know he thinks he prevents our family from doing many things because so much of the year we have to stay indoors. He loves to visit places where the temperature is nice and he can easily be outside." challenged their ability to perform well in school and work. Chronic daily pain, fatigue, and the sudden onset of acute pain crises increase absenteeism, make it difficult to concentrate, disrupt school and social interactions and create a lot of stress and anxiety. Patients reported difficulty in

remembering tasks, retaining what they learn in school, and difficulty staying engaged and focused on school activities. Some children reported frustration and social isolation from limitations on their ability to participate in physical activities, travel on long flights, play outside in cold weather, or swim in unheated water. Although SCD is an inherited condition, a lack of societal awareness about the disease leads some patients to hide their diagnoses so that their peers will not misperceive them as contagious.

Family members described the tremendous responsibility of caregiving, including the need to leave the work force to provide care for their loved one while facing the impact of lost wages and significant out-of-pocket expenses. Adult patients reported difficulty in maintaining employment

because of frequent, unexpected, or prolonged absences due to acute SCD-related events. Some patients and family members described making decisions to avoid marriage to maintain health insurance or forego having children to avoid passing on the gene to the next generation. A number of patients reported serious problems with mental health issues such as depression, anxiety, and suicidal thoughts.

#### **Racial Bias**

"To improve health care access, the sickle cell community is faced with the awesome task of trying to rewrite the dominant narratives about their patients whose genetic disease marks them in the United States as quintessentially black. This narrative presumes that sickle cell patients are socially dysfunctional, dependent on narcotics, and poorly educated or, worse, uneducable. Knowing only a patient's race or ethnicity, even a well-meaning doctor may make presumptions that influence how he or she communicates with and medically treats a patient." -Rouse, 2009

We heard consistently, from patients, family members, clinicians, and other members of the sickle cell community, that the experience of living with SCD and all aspects of its treatment are mired in racism. Although SCD affects individuals of different races and ethnicities, it has historically been viewed in the US as a "black disease." Racism, implicit or otherwise, presents devastating obstacles to care in what is already a debilitating and frequently lethal condition.

We heard frustration from the sickle cell community about the lack of investment in research or

"Consider the fact that we get stigmatized at regular ER hospitals, consider that our bodies work 3 times more than a regular human being, consider that this nation doesn't make sickle cell as a top priority as cancer, leukemia, or AIDS/HIV." comprehensive treatment centers that might increase access to better treatment, improve health outcomes, and reduce other disparities faced by SCD patients and their families. Historically, SCD has been underfunded, with no breakthroughs or developments in two decades. Although the populations of patients

living with other severe hereditary conditions such as cystic fibrosis are significantly less than that of SCD, these conditions often enjoy greater funding in research and treatment. Cystic fibrosis, for example, affects approximately 30,000 people in the US (versus about 100,000 with SCD) and receives 7-11 times the amount of funding per patient.<sup>27-29</sup>

#### Pain relief

Racial bias and treatment disparities are glaringly obvious in the dispensing of analgesics for

patients with SCD. Patients who present at emergency rooms in crisis are treated with suspicion. Efforts to avoid categorization as drug seeking lead patients during excruciating pain to get dressed up in professional attire before going to the ER. Patients expressed a hesitancy to reveal any familiarity with pain regimens they know to be effective out of fear they would be denied relief or labeled as an addict. Many hospitals follow "one size fits all" pain management protocols that limit dosing or cease dispensing after a predetermined period of time, irrespective of whether an individual's pain is adequately managed.

Racial bias in the prescription of pain medications has been well documented. A survey of more than 100 physicians who care for patients with SCD suggested that provider attitudes toward opioid addiction can have negative implications for patients, including undertreatment of pain and discrediting a patient's report of pain severity.<sup>27,30</sup> Furthermore, a 2014 study of attitudes toward patients with SCD among 215 emergency department providers (nurses and physicians) found that relative to physicians, who have less frequent and shorter interactions with patients, nurses had greater levels of negative attitudes toward SCD patients; nurses expressed more frustration in caring for patients, estimated a higher prevalence of opioid addiction among patients with SCD, and reported less unease with the ways in which their colleagues treated patients.<sup>27,31</sup>

"Most of us aren't coming into the hospitals until the pain is at ridiculous levels because we HATE feeling judged all the time. I don't know what these docs are being taught, but it seems compassion ain't part of the curriculum! [...] Most times when describing my pain I don't look at them at all, because if I do and I see that apathetic or judge-y, doubtful look on they face it makes me instantly regret coming in. It's hard because they want you to give eye contact, speak clearly and be so detailed, all of which are incredibly hard when you in pain [...]. I've felt like I had to put on a show when I was younger because if I said I'm a 8, 9, or 10 without crying or writhing in pain, they'd never believe me. It was obvious they didn't believe it by how long it would take me to get my medication, or all the tests I'd be forced to take before getting anything for pain."

The ongoing opioid crisis has further complicated patients' ability to access pain medicine, as doctors have grown increasingly wary of over-prescribing addictive therapies. The Centers for Medicare & Medicaid Services recently issued a policy to recommend that Medicare beneficiaries with SCD be exempt from opioid safety restrictions; similar exemptions have been recommended in some state Medicaid programs, although such policies will not improve patient access if provider attitudes do not also change.<sup>27,32,33</sup>

# **Lack of Specialists & Competent Treatment**

Patients lamented that SCD education and awareness among clinicians, even among hematologists, is severely lacking. Because there is a paucity of facilities and hematologists with expertise in SCD, patients commonly receive care from generalists, emergency nurses, and hospitalists who are not equipped to help them manage their disease. We heard repeated concerns that there were not enough doctors and other medical providers who are adequately trained in the management of SCD, particularly for adults. A national survey of over 3,000 family physicians revealed that only 20% respondents felt comfortable treating SCD.<sup>34,35</sup>

Clinical experts and patients alike commented that incompetent care can be catastrophic; we heard several anecdotes about deaths that might have been prevented had the patient received care from a more knowledgeable provider. Patients are conscious of the deaths and irreversible damage that results from long wait times in the ER, as well as the increased mortality from events that occur in the hospital; they reported feeling intense anxiety and stress about going to the hospital, sometimes delaying or avoiding seeking necessary care.

"Too often Sickle Cell Patients are marginalized, treated with stereotypical idealism and inherent bias that ultimately leads to them avoiding going for help or simply not receiving it in their greatest time of need, during the Vaso-Occlusive Crisis. This leads to many damaging side effects including death but more so the damage taking place in their bodies while they are lingering in an untreated state of ongoing necrosis taking place throughout their bodies!"

Among non-specialist providers, there is often the misperception that SCD is a pain condition. This over-simplification can lead to inappropriate care of the disease's many complications. In the ER, treatment with fluids, oxygen, and other medicines may be lacking and patients may be not be appropriately triaged. One caregiver, who was not a trained clinician, told us about needing to adjust a patient's oxygen level while in the hospital out of fear that inadequate attention from the attending providers would prove fatal to the patient.

While the management of pediatric patients with SCD has improved dramatically in recent years, the transition from pediatric to adult care presents a major risk for many patients. There is a

"Finding a great doctor that knows information about sickle cell is finding a needle in a hay stack"

significant shortage of adult care providers with the requisite knowledge and skill set. Patients described the difficulty they faced trying to navigate a very different system of care, and

recounted a worsening of health as result of limited access to multi-dimensional care. Indeed, there is a sharp increase in mortality during the transition from pediatric to adult care. <sup>36,37</sup>

This problem is magnified in smaller cities, towns, and rural areas, where patients report needing to travel several hours to see a specialist, participate in a clinical trial, or access treatment through a compassionate use programs. Patients were anxious that the retirement of a community's only specialist would lead to a spike in SCD mortality. A retired specialist from California, Dr. Keith Quirolo, provided some sobering statistics about the severe shortage of sickle cell hematologists; in the state of California, where Dr. Quirolo used to practice, there are only about five physicians who specialize in the treatment of SCD for an estimated 7,000 residents living with the condition.<sup>34</sup>

# **Attitude toward New Therapies**

There is consensus in the SCD community about the dire need for disease-modifying drugs. Over the past several years, few treatment options aside from analgesia were available. Barriers to accessing and utilizing the few available options, such as pharmaceutical-grade L-glutamine and hydroxyurea are many; these include insufficient payer coverage, a lack of pharmacies that stock these drugs, a lack of awareness among providers about L-glutamine (and reluctance to prescribe it), patient fears and/or intolerance of undesirable side effects (e.g., running to the bathroom from gastrointestinal side effects of L-glutamine; hair loss or infertility from hydroxyurea). In addition, patients pay out of pocket for supplements commonly recommended for SCD, such as zinc, vitamin B12, chlorophyll, iron, and folic acid.

There is cautious optimism about the promising pipeline of therapies, particularly gene therapies, that may soon become available. Nevertheless, patients and families worry about being able to

"The quality of life for most Sickle Cell Patients is a life of extreme suffering from pain and rejection of medical care. We are stigmatized as drug seekers because there is hardly any tools a care provider can offer us but pain killers. Life is painful and frustrating, and we have few choices in our options for care."

afford expensive new drugs and are concerned that high drug prices may cause insurance policies to implement barriers to access. Patients are concerned that doctors will not know enough about the new therapies to be willing to write prescriptions for them. Patients also wonder whether they will be eligible for treatment with these new treatments. We heard from some patients that they

fear they will be too old or have too much organ damage to be candidates for gene therapy.

Finally, stakeholders emphasized the importance of multidisciplinary care. New therapies need to be integrated into treatment plans that care for the whole patient.

# **SCD Patient and Caregiver Survey**

To date, ICER has received public comment submissions from 110 stakeholders (82 patients and/or family members of patients, 19 advocacy groups, 2 manufacturers, 1 provider group, 1 clinical society, and 4 clinical experts), participated in conversations with 19 key informants (3 patients and/or family members of patients, 2 advocacy groups, 3 manufacturers, 1 clinical society, and 9 clinical experts), and reviewed literature germane to the patient experience. In order to supplement what we have learned from the literature and stakeholder engagement, ICER is collaborating with Sick Cells and the Sickle Cell Disease Association of America (SCDAA) to conduct an online survey. The survey may provide valuable information needed to assess the comparative effectiveness of the interventions and help us to better quantify important information on quality of life and productivity. Data points from the survey results will be incorporated into the cost-effectiveness model where appropriate.

The goal of the survey is to collect information and perspectives from people living with and who care for people living with SCD. In particular, it will capture data not adequately addressed in the literature on the impact of SCD and its complications on their ability to work, go to school, or perform usual activities, as well as out of pocket costs for treatments and supportive care. The questions will be both qualitative and quantitative in nature. Survey questions will be included in the Appendix and responses will be summarized in the report.

The patient advocacy group Sick Cells has been working with ICER on all aspects of the survey, from planning to execution. The clinical, economic, and program teams at ICER have consulted with Sick Cells on a list of survey questions, and Sick Cells and SCDAA have distributed a web-based survey to its members. At the time this draft report was published, the results of this survey were not yet available, but we expect to integrate the results into our updated Evidence Report that will guide the public deliberation and voting at the meeting of the New England CEPAC.

# 3. Summary of Coverage Policies and Clinical Guidelines

# 3.1 Coverage Policies

For our review of pharmaceutical grade L-glutamine (Endari)'s insurance coverage, we reviewed publicly-available coverage policies for US national and regional commercial payers (Aetna, Anthem, Blue Cross Blue Shield Massachusetts [BCBSMA], CareFirst, Cigna, Emblem, and UnitedHealth care) and public plans of MassHealth (Massachusetts Medicaid), Neighborhood Health Plan of Rhode Island (Rhode Island Medicaid), and New Hampshire Department of Health and Human Services (NH Medicaid). We also reviewed the Centers for Medicare and Medicaid Services (CMS)<sup>38</sup> and were unable to locate any National Coverage Determinations or Local Coverage Determinations for L-glutamine.

At the time this report was published, with the exception of Florida Medicaid's coverage policy for crizanlizumab (Adakveo), no other commercial or public payer policies had been updated to include crizanlizumab or voxelotor (Oxbryta) following their FDA approval in November 2019.

#### **Pharmaceutical Grade L-Glutamine**

Excluding Cigna, the remaining six of the seven surveyed commercial payers covered L-glutamine for SCD with varying prior authorization criteria (Table 3.1). We were only able to locate publicly-available coverage policies for three of these payers – Aetna, Emblem, and UnitedHealthcare<sup>39-41</sup> – all of whom specified a patient age restriction of 5 years or older for coverage. Emblem covered L-glutamine for all FDA approved indications<sup>42</sup> (i.e., SCD patients 5 years of age or older) while Aetna and UnitedHealthcare also required that the patient have experienced two or more painful sickle cell crises within the last year.<sup>39-41</sup> Emblem and UnitedHealthcare required a SCD specialist or hematologist, respectively, to prescribe L-glutamine.<sup>40,41</sup> Aetna restricted coverage to those who showed a documented contraindication or failure of hydroxyurea while UnitedHealthcare required both a history of failure to non-prescription L-glutamine supplementation and also concurrent use of or contraindication to hydroxyurea.<sup>39,41</sup> All payers offered initial coverage for 12 months duration, with Aetna and UnitedHealthcare specifying positive or improved clinical response for reauthorization.<sup>39-41</sup>

Of the three surveyed public payers, only MassHealth covered L-glutamine (Table 3.1).<sup>43</sup> Similar to the commercial payers, MassHealth covered L-glutamine for patients with a diagnosis of SCD, five years of age or older, having experienced two or more painful sickle cell crises in the last year.<sup>43</sup> Coverage was restricted to those having inadequate or contraindicated response to hydroxyurea,

and no prescriber criteria were specified.<sup>43</sup> Initial duration of coverage spanned 12 months and no criteria were specified for reauthorization.<sup>43</sup>

Table 3.1. Private and Public Coverage Restrictions and Specifications for L-Glutamine

|                               | Coverage Specifications |                                                                                                |                                                                                              |                                                                                                                                                                        |                                      |                                                                                                 |
|-------------------------------|-------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|
|                               | Age                     | Diagnosis &<br>Clinical Criteria                                                               | Prescriber<br>Restriction                                                                    | Required Medical<br>Information                                                                                                                                        | Initial<br>Authorization<br>Duration | Reauthorization<br>Criteria                                                                     |
| Aetna <sup>39</sup>           | ≥5 years                | Diagnosis of<br>SCD and 2 or<br>more painful<br>sickle cell<br>crises within<br>past 12 months | NA                                                                                           | A documented contraindication, intolerance, allergy, or failure of hydroxyurea                                                                                         | 12 months                            | Clinical<br>documentation<br>indicating<br>disease stability<br>or improvement<br>from baseline |
| Emblem Health <sup>40</sup>   | ≥5 years                | All FDA<br>approved<br>indications not<br>otherwise<br>excluded from<br>Part D                 | Prescribed by,<br>or in<br>consultation<br>with, a<br>physician who<br>specializes in<br>SCD | NA                                                                                                                                                                     | 12 months                            | NA                                                                                              |
| UnitedHealthcare <sup>4</sup> | ≥5 years                | Diagnosis of<br>SCD and 2 or<br>more painful<br>sickle cell<br>crises within<br>past 12 months | Prescriber is a<br>hematologist                                                              | History of failure to non-prescription L-glutamine supplementation and Using concurrent hydroxyurea or unable to take hydroxyurea due to contraindication/int olerance | 12 months                            | Documentation<br>of positive<br>clinical response<br>to Endari<br>therapy                       |
| MassHealth <sup>43</sup>      | ≥5 years                | Diagnosis of<br>SCD and 2 or<br>more painful<br>sickle cell<br>crises within<br>past 12 months | NA                                                                                           | Inadequate<br>response, adverse<br>reaction, or<br>contraindication to<br>hydroxyurea                                                                                  | 12 months                            | NA                                                                                              |

NA: not applicable, SCD: sickle cell disease

CareFirst<sup>44</sup>, Anthem<sup>45</sup>, and Blue Cross Blue Shield of Massachusetts (BCBSMA)<sup>46</sup> require prior authorization for Lglutamine but their policies were not publicly available. Anthem and BCBSMA specify coverage as a tier three option.45,46

Cigna, Rhode Island Medicaid, and New Hampshire Department of Health and Human Services do not cover Lglutamine.

#### Crizanlizumab

Florida Medicaid was the only publicly-available policy providing prior authorization criteria for crizanlizumab.<sup>47</sup> Coverage was specified for patients age 16 or older with a diagnosis of SCD (all genotypes included) and who have experienced two or more acute pain crises within the past year.<sup>47</sup> Administration of crizanlizumab should follow this dosing pattern: 5 mg/kg intravenously over 30 minutes at weeks 0 and 2, and then every four weeks thereafter, with a single dose vial measured at 100mg/10ml.<sup>47</sup>

#### 3.2 Clinical Guidelines

#### American Society of Hematology (ASH)

#### 2019 Guidelines for Sickle Cell Disease: Cardiopulmonary and Kidney Disease<sup>48</sup>

A multidisciplinary guideline panel formed by ASH agreed on 10 recommendations to support the screening, diagnosis, and management of SCD and its cardiopulmonary and renal complications. Due to a lack of direct, high-quality evidence on the SCD outcomes of interest, the majority of recommendations were conditional rather than strong. Although these recommendations advise on management of patients with pulmonary arterial hypertension, albuminuria, unprovoked venous thromboembolism, and sleep-disordered breathing, we have summarized only the two recommendations pertaining to outcomes relevant to our review: chronic kidney disease (CKD) and management with hydroxyurea.

The panel suggests referral for a renal transplant for those with advanced CKD or end-stage renal disease. For those with worsening anemia associated with CKD, the panel suggest combination therapy with hydroxyurea and erythropoiesis-stimulating agents.

### National Heart, Lung, and Blood Institute (NHLBI)

#### Evidence-Based Management of Sickle Cell Disease: Expert Panel, 2014<sup>49</sup>

The NHLBI convened a multidisciplinary panel to develop guidelines for the management, recognition, and treatment of acute and chronic complications of SCD, for patients ranging from infancy through adulthood. These guidelines cover an extensive list of recommendations and for the purpose of this report, we have summarized only those which are most strongly recommended and focus on the outcomes and management options related to our review: acute pain crisis, acute chest syndrome (ACS), acute and chronic transfusion, hemoglobin, hydroxyurea, and stroke.

#### Health Maintenance (with focus on outcomes listed above)

 Only in children with sickle cell anemia (SCA; does not include those with HbSC, HbSD, HbSβ<sup>0</sup> thalassemia, or HbSβ<sup>+</sup> thalassemia), from age two through at least 16, the panel strongly recommends annual screening with transcranial doppler (TCD) imaging for the risk of stroke.

#### Management of Acute Complications of SCD (with focus on outcomes listed above)

- The panel strongly recommends treatment with parenteral opioids for adults and children experiencing an acute pain crisis with severe pain.
- For those hospitalized for an acute pain crisis, the panel recommends incentive spirometry while awake to reduce the risk of ACS.
- For patients who have ACS, the panel strongly recommends treatment with 1) intravenous cephalosporin, 2) an oral macrolide antibiotic, 3) supplemental oxygen, and 4) monitoring for hypoxemia, acute anemia, and bronchospasm.
- Among all patients, when there is rapid progression of ACS, the guidelines recommend urgent exchange transfusion and use of incentive spirometry while awake.

#### Hydroxyurea Therapy for Management of SCD (with focus on outcomes listed above)

- The panel strongly recommends treatment with hydroxyurea among adults with SCA for all of the following: those who have at least three moderate to severe pain crises within a year, those whose pain interferes with daily activities and quality of life, those who have a history of severe and/or recurrent ACS, and those who have severe symptomatic chronic anemia.
- For infants at least nine months of age, and children and adolescents with SCA, treatment with hydroxyurea to reduce SCD-related complications is recommended regardless of clinical severity.

#### Blood Transfusions for Management of SCD (with focus on outcomes listed above)

- Prior to undergoing a surgical procedure, the guidelines state that all adults and children with SCA are to be transfused with red blood cells to raise hemoglobin level to 10 g/dL.
- For both children and adults, the guidelines suggest consulting a blood bank for a workup of possible delayed hemolytic transfusion reaction (DHTR), for patients showing signs of acute anemia, jaundice, or pain within three weeks after a blood transfusion.
- For patients receiving chronic transfusion therapy, the guidelines recommend performing serial assessment of iron overload.
- In children with TCD results >170 cm/sec, the guidelines recommend referral to a specialist who may initiate chronic transfusion therapy for the prevention of stroke.

# 4. Comparative Clinical Effectiveness

#### 4.1 Overview

To inform our analysis of the clinical effectiveness of crizanlizumab, voxelotor, and L-glutamine in the treatment of SCD, we sought evidence related to each of these therapies in comparison with optimal usual care. We did not attempt to compare the interventions to each other, as these therapies may have a complementary role in the management of SCD. Our review focused on clinical benefits (i.e., mortality, acute pain crisis, organ damage, and quality of life), as well as potential harms (drug-related AEs). Methods and findings of our review of the clinical evidence are described in the sections that follow.

#### 4.2 Methods

#### **Data Sources and Searches**

Procedures for the systematic literature review assessing the evidence on crizanlizumab, voxelotor, and L-glutamine for SCD followed established best research methods. <sup>50,51</sup> We conducted the review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. <sup>52</sup> The PRISMA guidelines include a checklist of 27 items, which are described further in Appendix Table A1.

We searched MEDLINE and EMBASE for relevant studies. Each search was limited to English-language studies of human subjects and excluded articles indexed as guidelines, letters, editorials, narrative reviews, case reports, or news items. We included abstracts from conference proceedings identified from the systematic literature search. All search strategies were generated utilizing the Population, Intervention, and Comparator elements described in Section 1.2. The search strategies included a combination of indexing terms (MeSH terms in MEDLINE and EMTREE terms in EMBASE), as well as free-text terms (see Appendix Tables A2 and A3).

To supplement the database searches, we performed manual checks of the reference lists of included trials and invited key stakeholders to share references germane to the scope of this project. We also supplemented our review of published studies with data from conference proceedings, regulatory documents, information submitted by manufacturers, and other grey literature when the evidence met ICER standards (for more information, see <a href="http://icer-review.org/methodology/icers-methods/icer-value-assessment-framework/grey-literature-policy/">http://icer-review.org/methodology/icers-methods/icer-value-assessment-framework/grey-literature-policy/</a>).

#### **Study Selection**

Subsequent to the literature search and removal of duplicate citations using both online and local software tools, study selection was accomplished through two levels of screening at the abstract and full-text level. Two reviewers independently screened the titles and abstracts of all identified publications using DistillerSR (Evidence Partners, Ottawa, Canada); a third reviewer worked with the initial two reviewers to resolve any issues of disagreement through consensus. Citations accepted during abstract-level screening were retrieved in full text for review. Reasons for exclusion were categorized according to the PICOTS elements during full-text review.

#### **Data Extraction and Quality Assessment**

Two reviewers extracted key information from the full set of accepted studies (See Appendix D). Elements included a description of patient populations, sample size, duration of follow-up, study design features, interventions (agent, dosage, dosing frequency, method of administration), results, and quality assessment for each study. Extracted data were reviewed for logic and were validated by a third investigator for additional quality assurance.

We used criteria published by the US Preventive Services Task Force (USPSTF) to assess the quality of clinical trials and cohort studies, using the categories "good," "fair," or "poor." <sup>53</sup>

#### **Assessment of Bias**

As part of our quality assessment, we evaluated the evidence base for the presence of potential publication bias. Given the emerging nature of the evidence base for these newer treatments, we scanned the ClinicalTrials.gov site to identify studies completed more than two years ago. Search terms included sickle cell, crizanlizumab, voxelotor and L-glutamine. We searched for studies which would have met our inclusion criteria, and for which no findings have been published.

#### **Data Synthesis and Statistical Analyses**

The results of included studies are described narratively in the sections that follow. Analyses are descriptive in nature only, as we did not intend to compare crizanlizumab, voxelotor, and L-glutamine to each other through indirect quantitative analysis. Insufficient data were identified to allow for pairwise meta-analyses of individual agents.

# **Assessment of Level of Certainty in Evidence**

We used the <u>ICER Evidence Rating Matrix</u> to evaluate the level of certainty in the available evidence of a net health benefit among crizanlizumab, voxelotor, and L-glutamine relative to optimal supportive care (see Appendix D).<sup>54</sup>

#### 4.3 Results

#### **Study Selection**

Our literature search identified 103 potentially relevant references (see Appendix Figure A1), of which 14 references (5 publications, 6 conference presentations, and 3 FDA Multidisciplinary Review packets) relating to 4 individual studies met our inclusion criteria. The primary reasons for study exclusion included interventions or dosing protocols not of focus and evaluation of outcomes not of interest (e.g., red cell nicotinamide adenine dinucleotide redox potential).

Of the 11 included references, 5 references related to a single Phase II RCT of crizanlizumab. 17,55-58 We identified a single publication of a Phase III RCT of voxelotor and 3 conference abstracts related to the same trial; earlier phase studies of voxelotor were excluded due to the use of lower doses of the drug. We included 4 references of L-glutamine, which corresponded to a Phase II and a Phase III RCT. 16,60-62 Details of all included studies are summarized in Appendix D and in the sections that follow.

Although we defined several chronic SCD complications (e.g., chronic pain, organ damage, mortality) in our scope as outcomes of interest, we did not identify any data related to the effect of crizanlizumab, voxelotor, or L-glutamine on these outcomes. Consequently, the results described below summarize the short-term treatment effects of these therapies, including acute complications (e.g., incidence of acute pain crises, ACS), health care utilization (e.g. hospitalizations and emergency department visits), quality of life, and changes in hemolysis markers).

#### **Quality of Individual Studies**

We rated the key studies of crizanlizumab and voxelotor to be of good quality using criteria from the USPSTF (Appendix D). <sup>17,59</sup> The trials had adequate blinding of patients, investigators, and outcome assessors. The groups were comparable at baseline and there was non-differential follow-up. We rated the Phase III trial of L-glutamine to be fair quality because there was a high and different loss to follow-up between groups; statistical imputation to account for these differences may have introduced further bias. <sup>16</sup> We considered the Phase II trial of L-glutamine to be poor quality because of differences in the groups assembled at baseline, a large and differential rate of drop-out, and inadequate control for potential confounders (e.g., hydroxyurea use). <sup>60</sup>

#### **Key Studies of Crizanlizumab**

Evidence on crizanlizumab was derived from the SUSTAIN trial.<sup>17</sup> This study was a Phase II, placebo-controlled trial that randomized 198 individuals with SCD to 5.0 mg/kg of crizanlizumab (n=67), 2.5 mg/kg of crizanlizumab (n=66), or placebo (n=65). The trial included a 30-day screening phase, a 52-week treatment phase, and a 6-week follow-up evaluation phase. Crizanlizumab was

administered intravenously in two loading doses, two weeks apart, and every 4 weeks thereafter through week 50 of the trial (14 total doses). As crizanlizumab was approved at the higher dose (5.0 mg/kg), efficacy evidence pertaining to the low-dose arm of SUSTAIN was not summarized in this review. Safety data were supplemented with evidence from the low-dose arm.

Patients 16-65 years of age were eligible to participate in SUSTAIN if they had any genotype of SCD and experienced 2-10 SCD-related acute pain crises in the 12 months prior to enrollment.<sup>17</sup> Patients who had been receiving treatment with hydroxyurea for at least 6 months and had maintained a stable dose during the 3 months immediately preceding enrollment, were permitted to continue therapy during the trial; receipt of chronic red-cell transfusions was an exclusion criterion.

At baseline, patient characteristics were balanced across intervention arms. Patients in the crizanlizumab group had a median age of 29 years, 52% were females, 90% were black, 70% had an HbSS SCD genotype, and 63% were receiving concomitant therapy with hydroxyurea.<sup>17</sup> The proportion of patients with 2-4 or 5-10 SCD-related crises in the previous year, was 63% and 37%, respectively (Table 4.1).

Table 4.1. Key Trial of Crizanlizumab: SUSTAIN<sup>17</sup>

| Interventions                  | Inclusion Criteria   | Treatment<br>Duration | Baseline<br>Characteristics* | Primary Endpoint           |
|--------------------------------|----------------------|-----------------------|------------------------------|----------------------------|
| 1. Crizanlizumab (5            | 16 – 65 years of age | 52-weeks of           | Median age: 29               | Annual rate of acute pain  |
| mg/kg, N=67)                   | SCD diagnosis (any   | treatment +           | years (range 16-63)          | crises                     |
| 2. Crizanlizumab               | genotype)            | 6-week evaluation     | Black: 90%                   |                            |
| (2.5 mg/kg, n=66) <sup>‡</sup> |                      | phase                 | HbSS: 70%                    | Acute episodes of pain,    |
| <b>3. Placebo</b> (N=65)       | 2-10 acute pain      |                       | HbSC: 13%                    | with no medically          |
|                                | crises in 12 months  | Early                 | HbSβ0: 4%                    | determined cause other     |
|                                | before enrollment    | discontinuation       | HbSβ+: 10%                   | than a vaso-occlusive      |
|                                |                      | Crizanlizumab: 36%    | Other: 1%                    | event that resulted in a   |
|                                |                      | Placebo: 37%          | Hydroxyurea use:             | medical facility visit and |
|                                |                      |                       | 63%                          | treatment with oral or     |
|                                |                      |                       | Acute pain crises in         | parenteral agents or with  |
|                                |                      |                       | prior 12 months: 2-          | a parenteral nonsteroidal  |
|                                |                      |                       | 4: 63%, 5-10: 37%            | anti-inflammatory drug.    |
|                                |                      |                       |                              |                            |

SCD: sickle cell disease

The SUSTAIN trial's primary endpoint was the annual rate of sickle cell-related pain crises, defined as acute episodes of pain, with no medically determined cause other than a vaso-occlusive event, that resulted in a medical facility visit and treatment with oral or parenteral narcotic agents or with a parenteral nonsteroidal anti-inflammatory drug.<sup>17</sup> Acute chest syndrome, hepatic sequestration, splenic sequestration, and priapism (requiring a visit to a medical facility) were also considered to be crisis events.

#### Clinical Benefits of Crizanlizumab

Compared to optimal usual care alone (i.e., placebo), patients treated with crizanlizumab experienced fewer acute pain crises per year and sustained a longer period of time before the first (and second) crises following initiation of the trial therapy. The annual rate of days hospitalized was numerically lower with crizanlizumab, although this outcome did not reach statistical significance. Crizanlizumab did not improve quality of life, as measured in the study.

#### Acute complications of SCD

As noted above, SUSTAIN evaluated the annual rate of sickle cell-related acute pain crises as its primary endpoint. The median annualized crisis rate was 1.63 in the crizanlizumab group and 2.98 in the placebo group (median difference -1.01, p=0.01).<sup>17</sup> Time to event analyses suggested that

<sup>\*</sup> Baseline Characteristics reported from crizanlizumab 5 mg/kg arm. Baseline characteristics were balanced across treatment arms; ‡ evidence pertaining to efficacy of low-dose crizanlizumab was not summarized in this report, however we supplemented our safety review with data from this dosage arm

crizanlizumab reduced the risk of a first and second acute pain crisis by approximately 50% (Table 4.2).

The FDA performed sensitivity analyses that excluded patients who discontinued the trial early and that only included patients who discontinued early. The results suggested that the reduction in the annual rate of crisis was slightly lower in the analysis that excluded the non-completers (median rate of 1.18 vs. 2.98 for crizanlizumab and placebo, respectively) and higher in the analysis of discontinued patients (1.75 vs. 2.59).<sup>57</sup> As patients were discontinued from the study if they missed doses of the study drug (due to hospitalization or otherwise) this may have accounted for the difference.

Uncomplicated crises, defined as crises other than ACS, hepatic sequestration, splenic sequestration, or priapism, occurred at a median rate per year of 1.08 (IQR 0.00-3.96) in patients treated with crizanlizumab, compared to a rate of 2.91 (IQR 1.00-5.00; p=0.02) in the placebo arm. 17

The median rate of ACS did not statistically differ across treatment arms, as all groups had a rate of zero.<sup>17</sup> At the end of the treatment phase, 36% of the crizanlizumab group had a crisis rate of zero, compared to 18% of the placebo group. 17

Table 4.2. Acute SCD Complications in the SUSTAIN Trial of Crizanlizumab 17,63

|                                    | Crizanlizumab (n=67)   | Placebo (n=65)    | p-value             |  |
|------------------------------------|------------------------|-------------------|---------------------|--|
| Annual rate of acute pain crises   | 1.63 (0.00-3.97)       | 2.98 (1.25-5.87)  | Median difference:* |  |
| per year, Median (IQR)             |                        |                   | -1.01               |  |
|                                    |                        |                   | p=0.01              |  |
| Patients with crisis rate of zero, | 24 (35.82)             | 11 (16.92)        | p=0.013             |  |
| n (%)                              |                        |                   |                     |  |
| Time to first acute pain crisis,   | 4.07 (1.31-NR)         | 1.38 (0.39-4.90)  | p=0.001             |  |
| Median months (IQR)                |                        |                   |                     |  |
| Time to first acute pain crisis,   | 0.50 (0.33 to 0.74)    |                   |                     |  |
| HR (95% CI)                        |                        |                   |                     |  |
| Time to second acute pain          | 10.32 (4.47-NR)        | 5.09 (2.96-11.01) | p=0.02              |  |
| crisis, Median months (IQR)        |                        |                   |                     |  |
| Time to second acute pain          | HR 0.53 (0.33 to 0.87) |                   |                     |  |
| crisis, HR (95% CI)                |                        |                   |                     |  |
| Annual rate of uncomplicated       | 1.08 (0.00-3.96)       | 2.91 (1.00-5.00)  | p=0.02              |  |
| acute pain crises, Median (IQR)    |                        |                   |                     |  |
| Annual rate of ACS, Median         | 0 (0.00-0.00)          | 0 (0.00-0.00)     | p=0.78              |  |
| (IQR)                              |                        |                   |                     |  |

ACS: acute chest syndrome, CI: confidence interval, HR: hazard ratio, IQR: interquartile range, NR: not reported, SCD: sickle cell disease, \*Median difference and CI estimated using Hodges-Lehmann method

#### Hospitalization

The median rate of days hospitalized per year was 4.0 (IQR 0.0-25.7) in the crizanlizumab group and 6.9 (IQR 0.0-28.3) in the placebo group; this difference did not reach statistical significance. <sup>17</sup> A post-hoc time to event analysis also did not reach statistical significance but suggested that crizanlizumab may have delayed time to first hospitalization (median 6.3 vs. 3.2 months for the crizanlizumab and placebo arms, respectively; HR 0.68 [95% CI 0.44 to 1.07]).55

Table 4.3. Hospitalizations in the SUSTAIN Trial of Crizanlizumab 17,55,57

|                                                            | Crizanlizumab<br>(n=67)         | Placebo (n=65) | Difference<br>p-value                         |
|------------------------------------------------------------|---------------------------------|----------------|-----------------------------------------------|
| Annual rate per year of days hospitalized,<br>Median (IQR) | 4.0 (0.0-25.7)                  | 6.9 (0.0-28.3) | Median: 0.0<br>(95% CI -4.4 to 0.0)<br>p=0.45 |
| Patients with ≥1 hospitalization, n (%)                    | 36 (54)                         | 42 (65)        | NR                                            |
| Median time to first hospitalization (months)              | 6.3                             | 3.2            | NR                                            |
| Time to first hospitalization                              | HR: 0.68, 95% CI (0.44 to 1.07) |                |                                               |

CI: confidence interval, HR: hazard ratio, IQR: interquartile range, NR: not reported

#### **Quality of Life**

The SUSTAIN trial evaluated quality of life using the Brief Pain Inventory (BPI) Questionnaire and the 36-Item Short Form Survey (SF-36) as exploratory endpoints. The BPI is a patient-reported instrument to rate the severity of a patient's pain and its impact on daily function. Significant changes from baseline in BPI scores were not observed during the SUSTAIN trial.<sup>17</sup>

The SF-36 is a general patient-reported quality of life instrument that measures patients' perceptions of health and well-being along 8 scales: physical functioning, role limitations due to physical problems, bodily pain, general health perceptions, vitality, social functioning, role limitations due to personal or emotional problems, and mental health. Significant differences in the LS mean change from baseline to Week 52 were not observed in any of the domains of the SF-36, including the bodily pain scale.<sup>57</sup>

#### **Markers of Hemolysis**

No significant differences were observed in changes in hemoglobin, lactate dehydrogenase, number of reticulocytes, haptoglobin, and indirect bilirubin between the crizanlizumab and placebo arms of the SUSTAIN trial.17

#### **Subgroup Analyses**

Treatment with crizanlizumab resulted in a lower rate of acute pain crises across a number of subgroups of interest, including groups characterized by concomitant hydroxyurea use, the number of pain crises in the prior year, and sickle cell genotype. Table 4.4 reports the median annual rate of pain crises in these groups; additional outcomes in these subgroups, including the proportion of patients who were crisis free, time to first and second crisis, and type of crisis are reported in Appendix table D4. Interaction tests to assess whether treatment efficacy differed between subgroups were not reported.

Table 4.4. Annual Rate of SCD-Related Pain Crises in Subgroups of the SUSTAIN Trial, Median (IQR)<sup>17,58</sup>

|                                                                   | Crizanlizumab    | Placebo           | Hazard ratio<br>(95% CI) |  |
|-------------------------------------------------------------------|------------------|-------------------|--------------------------|--|
| Annual Rate of Acute Pain Crises, Median IQR                      |                  |                   |                          |  |
| Concomitant hydroxyurea                                           | 2.43 (0.00-4.01) | 3.58 (1.13-6.23)  | NR                       |  |
| No concomitant hydroxyurea                                        | 1.00 (0.00-2.00) | 2.00 (1.63-3.90)  | NR                       |  |
| 2-4 SCD pain crises in previous 12 months                         | 1.14 (0.00-2.00) | 2.00 (1.00-3.90)  | NR                       |  |
| 5-10 SCD pain crises in previous 12 months                        | 1.97 (0.00-3.98) | 5.32 (2.01-11.05) | NR                       |  |
| HbSS genotype                                                     | 1.97 (0.00-3.96) | 3.01 (1.01-6.00)  | NR                       |  |
| Other genotype                                                    | 0.99 (0.00-4.01) | 2.00 (1.86-5.00)  | NR                       |  |
| Time to first on-Treatment Acute Pain Crisis, Median months (IQR) |                  |                   |                          |  |
| Concomitant hydroxyurea                                           | 2.43 (1.15-NR)   | 1.15 (0.33-4.90)  | 0.58 (0.35-0.96)         |  |
| No concomitant hydroxyurea                                        | 5.68 (3.09-NR)   | 2.86 (0.79-4.53)  | 0.39 (0.20-0.76)         |  |
| 2-4 acute pain crises in previous 12 months                       | 4.76 (1.81-NR)   | 1.61 (0.62-6.70)  | 0.53 (0.31-0.90)         |  |
| 5-10 acute pain crises in previous 12 months                      | 2.43 (1.25-7.75) | 1.03 (0.30-2.97)  | 0.47 (0.25-0.89)         |  |
| HbSS genotype                                                     | 4.07 (1.31-NR)   | 1.12 (0.33-4.17)  | 0.50 (0.31-0.80)         |  |
| Other genotype                                                    | 6.90 (1.41-NR)   | 3.09 (1.12-6.21)  | 0.47 (0.21-1.05)         |  |

CI: confidence interval, IQR: interquartile range, NR: not reported, SCD: sickle cell disease

#### Harms of Crizanlizumab

There were three deaths among patients treated with crizanlizumab, although none were considered by the investigator to be related to the study therapy. The rate of discontinuation due to an AE was low. The most commonly reported AEs included back pain, nausea, arthralgia, and pyrexia. The prescribing information for crizanlizumab includes warnings for infusion-related reactions and interference with automated platelet counts (i.e., platelet clumping).

There were three deaths among patients treated with crizanlizumab in the SUSTAIN trial.<sup>17</sup> These deaths included 2 patients in the high-dose crizanlizumab group (1 from ACS and 1 from endocarditis and sepsis) and 1 in the low-dose crizanlizumab group (from ACS, aspiration,

respiratory failure, and progressive vascular congestion). None of these deaths were considered related to crizanlizumab.

SAEs that occurred in at least 2 crizanlizumab-treated patients included pyrexia (3%) and influenza (5%). In addition, there was one life-threatening case of anemia and one intracranial hemorrhage reported in the low-dose crizanlizumab group. Fewer patients discontinued treatment due to an AE in the crizanlizumab groups (2%) than the placebo group (5%). Also that occurred in at least 10% of patients treated with high-dose crizanlizumab are reported in Table 4.5.

Table 4.5. AEs in the SUSTAIN Trial of Crizanlizumab<sup>17</sup>

|                                   | High-Dose Crizanlizumab | Placebo |
|-----------------------------------|-------------------------|---------|
|                                   | (n=66)                  | (n=62)  |
|                                   | n, (%)                  | n, (%)  |
| Headache                          | 11 (17)                 | 10 (16) |
| Back pain                         | 10 (15)                 | 7 (11)  |
| Nausea                            | 12 (18)                 | 7 (11)  |
| Arthralgia                        | 12 (18)                 | 5 (8)   |
| Pain in extremity                 | 11 (17)                 | 10 (16) |
| Urinary tract infection           | 9 (14)                  | 7 (11)  |
| Upper respiratory tract infection | 7 (11)                  | 6 (10)  |
| Pyrexia                           | 7 (11)                  | 4 (6)   |
| Diarrhea                          | 7 (11)                  | 2 (3)   |
| Musculoskeletal pain              | 8 (12)                  | 6 (10)  |
| Pruritus                          | 5 (8)                   | 3 (5)   |
| Vomiting                          | 5 (8)                   | 3 (5)   |
| Chest pain                        | 1 (2)                   | 1 (2)   |

The prescribing information for crizanlizumab includes warnings for infusion-related reactions and interference with automated platelet counts (i.e., platelet clumping). The FDA is requiring several postmarketing studies, including a clinical trial, to assess the risk of infusion-related reactions and immunogenicity, bleeding complications, and infections. Antibodies against crizanlizumab were not detected during the SUSTAIN trial.

#### **Key Studies of Voxelotor**

Evidence on voxelotor was derived from the HOPE trial.<sup>59</sup> This study was a Phase III, placebocontrolled trial that randomized 274 individuals with SCD to receive a once-daily oral dose of 1500 mg of voxelotor (n=90), 900 mg of voxelotor (n=92), or placebo (n=92).

The trial included a screening period of 28-35 days, a treatment period up to 72 weeks, and an endof-trial visit 3-5 weeks subsequent to the last dose of the trial regimen.<sup>59</sup> As voxelotor was approved at the higher dose (1500 mg), evidence pertaining to the low-dose arm of HOPE was not

summarized in this review. We supplemented our safety review with evidence from the low-dose arm.

Patients 12-65 years of age were eligible to participate in the HOPE trial if they had any genotype of SCD, a hemoglobin level between 5.5 and 10.5 g per deciliter (g/dL) during screening, and experienced 1-10 SCD-related acute pain crises in the 12 months prior to enrollment. Patients who had been receiving hydroxyurea at a stable dose for at least 3 months prior to enrollment were permitted to continue therapy during the trial. Patients were excluded if they were receiving chronic red-cell transfusions, had received a transfusion in the past 60 days, or had been hospitalized for an SCD-related acute pain crisis within 14 days of providing informed consent.

At baseline, patient characteristics were balanced across intervention arms. Patients in the voxelotor group had a median age of 24 years and were made up of 64% females; 66% of the trial population were black, 68% had an HbSS SCD genotype, and 64% were receiving concomitant therapy with hydroxyurea.<sup>59</sup> The proportions of patients with 1 versus 2-10 SCD-related crises in the previous year, was 39% and 61%, respectively (Table 4.6).

Table 4.6. Key Trial of Voxelotor: HOPE<sup>59</sup>

| Interventions             | Inclusion Criteria | Treatment<br>Duration | Baseline<br>Characteristics* | Primary Endpoint     |
|---------------------------|--------------------|-----------------------|------------------------------|----------------------|
| 1. Voxelotor (1500        | 12-65 years of age | 52-weeks              | Median age: 24               | Percentage of        |
| mg QD, N=90)              | SCD diagnosis      |                       | years (range 12-59)          | participants with Hb |
| 2. Voxelotor (900         | regardless of      | End-of-trial visit 4  | Black: 66%                   | response             |
| mg QD, N=92) <sup>‡</sup> | genotype           | weeks after last      | HbSS: 68%                    |                      |
| <b>3. Placebo</b> (N=92)  |                    | dose of trial drug or | <b>HbSC</b> : 3%             | Hb response was      |
|                           | 1-10 acute pain    | placebo               | <b>HbSβ0:</b> 20%            | defined as an        |
|                           | crises in past 12  |                       | HbSβ+: 8%                    | increase from        |
|                           | months             | Early                 | Other: 1%                    | baseline of more     |
|                           |                    | discontinuation       | Hydroxyurea use:             | than 1.0 g per       |
|                           | Hb level between   | Voxelotor: 27%        | 64%                          | deciliter at week 24 |
|                           | 5.5 and 10.5 g/dL  | Placebo: 21%          | Acute pain crises in         |                      |
|                           |                    |                       | prior 12 months: 1:          |                      |
|                           |                    |                       | 39%, 2-10: 61%               |                      |

G: gram, g/dL: grams per deciliter, Hb: hemoglobin, SCD: sickle cell disease

The HOPE trial's primary endpoint was the proportion of patients who had a hemoglobin response, which was defined as an increase from baseline in hemoglobin of more than 1.0 g/dL at week 24.<sup>59</sup> The annualized rate of SCD-related acute pain crises was evaluated as a secondary endpoint. The trial's definition of SCD-related acute pain crises was a composite of ACS and/or moderate to severe pain lasting at least 2 hours with no explanation other than a vaso-occlusive event. The crises must have required oral or parenteral opioids, ketorolac, or other analgesics and have been documented in a medical record that the patient was seen or contacted a physician within 1 business day of the event.

## **Clinical Benefits of Voxelotor**

Compared to optimal usual care alone (i.e., placebo), voxelotor increased hemoglobin levels and reduced markers of hemolysis. It did not significantly reduce the number of acute pain crises and did not improve quality of life as measured by the study. We did not identify any data related to health care utilization for voxelotor.

## Effect on Hemoglobin

The HOPE trial's primary endpoint was hemoglobin response, defined as a 1 g/dL change in hemoglobin.<sup>59</sup> At week 24, 51% of the voxelotor group and 7% of the placebo group (p<0.001) had a response; sensitivity analyses accounting for missing data demonstrated consistent results.<sup>64</sup>

<sup>\*</sup>Baseline Characteristics reported from voxelotor 1500 mg Arm. baseline characteristics were balanced across treatment arms; ‡ evidence pertaining to efficacy of low-dose voxelotor was not summarized in this report. Safety data from low-dose voxelotor was included in our review of potential harms

Improvements in hemoglobin were observed as early as 2 weeks of follow-up. At week 24, the adjusted mean change in hemoglobin from baseline was 1.1 g/dL (95% CI 0.9 to 1.4) in the voxelotor group and -0.1 g/dL (95% CI -0.3 to 0.2; p<0.001; Table 4.7).<sup>59</sup>

#### **Markers of Hemolysis**

Patients in the voxelotor group had significantly greater reductions from baseline in indirect bilirubin levels and percentage of reticulocytes (Table 4.7).<sup>59</sup> Other laboratory parameters, including absolute reticulocyte count and lactate dehydrogenase level, were not statistically different between groups at week 24. Red-cell transfusions during the trial period were administered to 33% of voxelotor patients and 25% of placebo patients (statistical testing not reported); the majority of these transfusions were due to acute pain crises.<sup>59</sup>

Table 4.7. Change in Hemoglobin and Markers of Hemolysis in the HOPE Trial<sup>59</sup>

|                                                   | Voxelotor               | Placebo             | p-value |
|---------------------------------------------------|-------------------------|---------------------|---------|
| Primary Endpoint                                  |                         |                     |         |
| Hemoglobin response, n (%)*                       | 46 (51)                 | 6 (7)               | p<0.001 |
| LS Mean change from Baseline (95% CI) to Week 24  | in Markers of Hemolysis |                     |         |
| Absolute change in hemoglobin level, g/dL         | 1.1 (0.9 to 1.4)        | -0.1 (-0.3 to 0.2)  | p<0.001 |
| Relative change in indirect bilirubin level, %    | -29.1 (-35.9 to -22.2)  | -3.2 (-10.1 to 3.8) | p<0.001 |
| Relative change in percentage of reticulocytes, % | -19.9 (-29.0 to -10.9)  | 4.5 (-4.5 to 13.6)  | p<0.001 |
| Relative change in absolute reticulocyte count, % | -8.0 (-18.1 to 2.1)     | 3.1 (-7.0 to 13.2)  | NS      |
| Relative change in lactate dehydrogenase level, % | -4.5 (-11.9 to 2.8)     | -3.4 (-4.0 to 10.9) | NS      |

CI: confidence interval, g/dL: grams per deciliter, LS: least squares, NS: not significant, \*hemoglobin response was defined as a 1 g/dL change in hemoglobin

# **Subgroup Analyses**

A greater proportion of patients with a hemoglobin response was observed with voxelotor in subgroups defined by age, use of concurrent hydroxyurea, and baseline hemoglobin level (Table 4.8).<sup>59</sup> The mean change in hemoglobin from baseline to Week 24 in patients treated with voxelotor ranged from 1.0 g/dL to 1.5 across subgroups with and without hydroxyurea use and anemia severity subgroups; hemoglobin levels remained relatively stable in subgroups treated with placebo. Interaction tests to assess whether treatment efficacy differed between subgroups were not reported.

Table 4.8. Hemoglobin Response in Subgroups of the HOPE Trial<sup>59</sup>

|                                              | Mean Change in Hemoglobin from Baseline to Week 24, g/dL (95% CI)‡ |                    | Difference in<br>Hemoglobin Response |  |
|----------------------------------------------|--------------------------------------------------------------------|--------------------|--------------------------------------|--|
|                                              | Voxelotor                                                          | Placebo            | Rates at Week 24, %<br>(95% CI)*     |  |
| Age 12-17 years                              | NR                                                                 | NR                 | 51.3 (23.0 to 79.5)                  |  |
| Age ≥18 years                                | NR                                                                 | NR                 | 43.3 (30.7 to 56.0)                  |  |
| 1 prior acute pain crisis in prior 12 months | NR                                                                 | NR                 | 55.2 (37.1 to 73.2)                  |  |
| 2-10 acute pain crises in prior 12 months    | NR                                                                 | NR                 | 37.9 (22.8 to 53.0)                  |  |
| No hydroxyurea use                           | 1.2 (0.8 to 1.7)                                                   | 0 (-0.3 to 0.3)    | 34.9 (15.3 to 54.6)                  |  |
| Baseline hydroxyurea use                     | 1.0 (0.7 to 1.4)                                                   | -0.1 (-0.3 to 0.1) | 50.0 (36.0 to 64.0)                  |  |
| Baseline hemoglobin <7 g/dL                  | 1.5 (0.6 to 2.4)                                                   | 0.2 (-0.2 to 0.6)  | 42.9 (-2.0 to 87.8)                  |  |
| Baseline hemoglobin ≥7 g/dL                  | 1.1 (0.8 to 1.4)                                                   | -0.1 (-0.3 to 0.1) | 44.7 (32.7 to 56.6)                  |  |

‡Per protocol analysis with observed data, \*ITT analysis: Difference in response rates: voxelotor 1500mg minus placebo, CI: confidence interval, g/dL: grams per deciliter, SCD: sickle cell disease

## Acute complications of SCD

The annualized incidence rate of SCD-related acute pain crisis was evaluated as a secondary endpoint in the HOPE trial and did not differ among trial arms.<sup>59</sup> In the voxelotor group, there were 2.77 (95% CI 2.15 to 3.57) crises per person-year versus 3.19 (95% CI 2.50 to 4.07) in the placebo group (incidence rate ratio 0.87 [95% CI 0.61 to 1.23]); 67% and 69% of patients in the voxelotor and placebo arms, respectively, had at least 1 crisis. Investigators noted that a longer duration of follow-up is required to evaluate the effect of voxelotor on the incidence of acute pain crises. A final analysis will be performed when all subjects complete 72 weeks of treatment or their final study visit.

Sickle cell anemia with crisis, ACS, pneumonia, priapism, and osteonecrosis were recorded as SCDrelated TEAEs in the HOPE trial.<sup>59</sup> Collectively, these events occurred in 76% of voxelotor-treated patients and 73% of placebo-treated patients.<sup>59</sup>

### Hospitalization

Although the rate and duration of hospitalizations for SCD-related acute pain crisis were originally defined as outcomes of interest in the HOPE trial's protocol, a protocol amendment in January of 2019 removed it from consideration.<sup>59</sup>

## **Quality of Life**

The HOPE trial assessed the Sickle Cell Disease Severity measure (SCDSM) total symptom score and EuroQOL 5-dimension 5-level (EQ-5D-5L) as exploratory endpoints; no differences were observed between the voxelotor and placebo groups for either outcome. 59,64 Investigators also collected data related to rate of opioid use and school and work attendance, however no results were identified in the public domain.

## **Harms of Voxelotor**

Rates of SAEs and treatment discontinuation due to an AE were relatively low in the HOPE trial of voxelotor. The most commonly reported AEs were diarrhea, nausea, abdominal pain, rash, and headache. The FDA prescribing information for voxelotor includes warnings for hypersensitivity reactions and interference with laboratory tests.

There were 4 fatal AEs in the HOPE trial, two of which occurred in patients treated with voxelotor (one from pulmonary sepsis, sickle cell anemia with crisis and acute sickle hepatic crisis; the second from sickle cell anemia with crisis); none of the deaths were determined to be related to the trial drug.<sup>59</sup>

Serious TEAEs that were deemed related to treatment were reported in 3% of patients treated with voxelotor and 1% of placebo-treated patients; 9% of patients in the voxelotor groups discontinued therapy due to a TEAE compared to 4% of patients in the placebo group. The most commonly reported AEs were diarrhea, nausea, abdominal pain, rash, and headache (Table 4.9). <sup>59</sup> The FDA prescribing information for voxelotor includes warnings for hypersensitivity reactions and interference with laboratory tests for quantification of hemoglobin species.

Table 4.9. Treatment-Emergent Adverse Events in the HOPE Trial of Voxelotor<sup>59</sup>

|                                 | Voxelotor, n (%) | Placebo, n (%) |
|---------------------------------|------------------|----------------|
| TEAE leading to discontinuation | 8 (9.1)          | 4 (4.4)        |
| Treatment-related serious TEAE  | 3 (3.4)          | 1 (1.1)        |
| Treatment-related TEAE          | 34 (38.6)        | 23 (25.3)      |
| Diarrhea                        | 11 (12.5)        | 3 (3.3)        |
| Nausea                          | 6 (6.8)          | 5 (5.5)        |
| Abdominal pain                  | 6 (6.8)          | 1 (1.1)        |
| Rash                            | 7 (8.0)          | 4 (4.4)        |
| Headache                        | 5 (5.7)          | 3 (3.3)        |
| Abdominal pain upper            | 2 (2.3)          | 2 (2.2)        |
| Fatigue                         | 0 (0)            | 0 (0)          |

SCD: sickle cell disease, TEAE: treatment-emergent adverse event

Table excludes SCD-related adverse events, defined as sickle cell anemia with crisis, acute chest syndrome, pneumonia, priapism, and osteonecrosis

# **Key Studies of L-Glutamine**

The primary source of evidence for our review of L-glutamine was the Phase III, placebo-controlled trial from Niihara et al. (2018);<sup>16</sup> a similarly designed Phase II study also informed our review, although due to a large rate of trial discontinuation and imbalance in baseline characteristics, evidence from this latter study was considered low quality.<sup>65</sup>

Both studies randomized patients with SCD to receive a twice-daily dose of L-glutamine (0.3 g per kilogram up to 30 g per day) or placebo. <sup>16,65</sup> The trials included a 48-week treatment phase, followed by a 3-week tapering period and 2-week observation period. Patients ≥5 years of age with a diagnosis of HbSS or Hbβ0-thalassemia were eligible to participate if they experienced at least two acute pain crises in the previous year (Table 4.10). Patients who had been receiving hydroxyurea at a stable dose for at least 3 months prior to enrollment were permitted to continue therapy during the trial. Patients were excluded if they had been hospitalized within 2 months of screening for something unrelated to SCD, had a prothrombin time international normalized ratio higher than 2, a serum albumin level less than 3.0 g/dL, had received any blood products 3 weeks prior to screening or L-glutamine within 30 days of screening, or had clinically significant renal or liver disease.

In the Phase III study, randomization was stratified by study site and baseline hydroxyurea use; characteristics were comparable across intervention arms at baseline. Patients in the L-glutamine group had a median age of 19 years and were made up of 52% females; 95% of the trial population was black, 90% had a diagnosis of sickle cell anemia, two thirds were receiving concomitant hydroxyurea, and 84% had experienced 2-5 acute pain crises in the year prior to enrollment.

Conversely, the Phase II study did not stratify randomization by hydroxyurea use and there were several imbalances in patient characteristics present at baseline; most notably, the Phase II trial

differed at baseline with respect to the proportion of females in each group (67% in the L-glutamine group versus 35% in the placebo group), and hydroxyurea use (57% in the L-glutamine-treated group versus 39% in the placebo group. 65

Table 4.10. Key Trials of L-Glutamine 16,61,65

| Trial                   | Interventions                                               | Inclusion<br>Criteria                                                                                                                                                                                             | Treatment<br>Duration                                                                                                                 | Baseline Characteristics*                                                                                                                                                                                                            | Primary Endpoint                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase III <sup>16</sup> | 1. L-glutamine<br>(0.3 g/kg, N=152)<br>2. Placebo<br>(N=78) | <ul> <li>≥ 5 years old age</li> <li>SCD diagnosis (homozygous hemoglobin S [HbSS], or sickle cell thalassemia (HbSβ<sup>0</sup>-thalassemia)</li> <li>≥2 acute pain crises documented in previous year</li> </ul> | 52-weeks  3-week tapering period followed by 2-week observation after 48 weeks  Early discontinuation L-glutamine: 36% Placebo: 24%   | Median age: 19 years (range 5-57)  Black: 95%  HbSS: 90%  HbSC: NR  HbSβ <sup>0</sup> : 10%  HbSβ <sup>+</sup> : 2%  Other: NR  Hydroxyurea use: 66%  Acute pain crises in prior 12  months: 0-1: 0.7%, 2-5: 84%, 6-9: 10%, ≥ 10: 5% | Number of acute pain crises through week 48: Pain leading to treatment with a parenterally administered narcotic or ketorolac in an emergency department (ED) or outpatient treatment center or during hospitalization. Acute chest syndrome, priapism, and splenic sequestration were classified as sickle cell–related events regardless of the need for narcotics or ketorolac. |
| Phase II <sup>65</sup>  | 1. L-glutamine<br>(0.3 g/kg N=37)<br>2. Placebo<br>(N=33)   | <ul> <li>≥ 5 years old age</li> <li>SCD diagnosis (homozygous hemoglobin S [HbSS], or sickle cell thalassemia (HbSβ<sup>0</sup>-thalassemia)</li> <li>≥2 acute pain crises in previous year</li> </ul>            | 52-weeks  3-week tapering period followed by 2-week observation after 48 weeks  Early discontinuation  L-glutamine: 51%  Placebo: 64% | Median age: 29 (range 13-58)  Black: 97%  HbSS: 94%  HbSC: NR  HbSβ <sup>0</sup> : 7%**  HbSβ <sup>+</sup> : 7%**  Other: NR  Hydroxyurea use: 57%                                                                                   | Number of acute pain crises through week 48: A visit to a medical facility lasting >4 hours for acute sickling-related pain that was treated with a parenterally administered narcotic (except for facilities in which only orally administered narcotics were used).                                                                                                              |

<sup>\*</sup>Baseline Characteristics reported from L-Glutamine 0.3k/kg arm. Baseline characteristics were balanced across treatment arms,\*\*: reported as beta thalassemia

The primary endpoint in both trials of L-glutamine was the number of acute pain crises through week 48 (Table 4.10). In the Phase III study, an acute pain crisis was defined as pain that led to treatment with a parenterally administered narcotic or ketorolac in a medical facility. Acute chest syndrome, priapism, and splenic sequestration were considered acute pain crises, irrespective of the need for narcotics or ketorolac. The Phase II study's definition required that the visit to the medical facility last more than 4 hours and permitted treatment with oral narcotics in facilities where that was the only formulation in utilization; ACS, priapism, and hepatic or splenic sequestration were considered acute pain crises.

There was a high and differential rate of dropout across treatment groups in both studies. More than half of the Phase II participants withdrew from the trial early (51% and 64% in the L-glutamine and placebo arms, respectively), and about a third of participants in the Phase III trial discontinued prior to completing 48 weeks (36% of the L-glutamine arm and 24% of the placebo arm). The most commonly cited reasons for discontinuation included withdrawal of consent and nonadherence.

Two additional Phase II studies were identified in our review of the FDA clinical review packet for L-glutamine and the clinicaltrials.gov site that would have matched our PICOTS criteria for inclusion. Both trials seemed to have been completed more than two years ago, yet our literature search did not find any publications related to these trial. We have summarized the limited information we have for these two studies in Appendix Table D18, but note that there may be potential publication bias in the evidence supporting L-glutamine.

## **Clinical Benefits of L-Glutamine**

Compared to optimal usual care alone (i.e., placebo), treatment with L-glutamine appeared to reduce the number of acute pain crises and hospitalizations, although the magnitude of benefit is uncertain. Due to a large and differential rate of withdrawal from the Phase II and Phase III studies of L-glutamine, investigators relied on imputation methods to calculate the rate of crises. These results were sensitive to the applied assumptions and were not statistically significant under certain approaches. We did not identify any data related to quality of life for L-glutamine.

# **Acute Complications of SCD**

Both the Phase II and Phase III studies of L-glutamine evaluated the number of SCD-related acute pain crises through Week 48 as a primary endpoint, although each study defined a pain crisis slightly differently (see Table 4.10.). The Phase II study did not meet the prespecified significance level for this analysis.<sup>65</sup> Statistically significant differences in the number of SCD-related acute pain crises were reported in the Phase III trial, with a median count of 3.0 in the L-glutamine group and 4.0 in the placebo group (p=0.005).<sup>16</sup> Interim analyses at 24 weeks did not reach specified significance levels (0.005) in either study.<sup>16</sup>

Due to the high and differential rate of trial discontinuation prior to the completion of the 48-week treatment period, investigators in the Phase III study imputed the crisis results. <sup>16,61</sup> The investigators assigned a crisis count to patients who dropped out of the study that was derived from the rounded group average for patients who completed the 48-week treatment period. A count of 3 was assigned to patients in the L-glutamine arm who dropped out of the study early who experienced fewer than 3 crises and a count of 4 was assigned to placebo patients who dropped out early having experienced fewer than 4 crises. Patients who dropped out of the study early with more than these averages were included with the count at the time of dropout carried forward through 48 weeks.

This method may have introduced bias in the results because the high number of non-completers meant that the large proportion of imputed counts may have changed the distribution of data. Moreover, the FDA was concerned that the imputation method did not control for variables that could modify the outcome, such as time spent on study, or study stratification factors (i.e., region of participating site and hydroxyurea use).<sup>61</sup>

The FDA conducted several sensitivity analyses using different assumptions about the dropout data. Their analyses suggested that the reduction in crises from L-glutamine versus placebo ranged from 0.4 to 0.9.<sup>61</sup> Consequently, FDA concluded that the results show a "modest trend supporting a claim of benefit for [L-glutamine]", but noted that in some analyses, the upper limits of the confidence intervals for rate ratios comparing the treatment groups included 1.<sup>61</sup>

Table 4.11. Rates of Sickle Cell Crisis through Week 48 using Different Analysis Assumptions in the Phase III Trial of L-Glutamine 16,61

| Analysis set                                                     | L-Glutamine<br>(n=132)<br>Median<br>(range) | Placebo<br>(n=74)<br>Median<br>(range) | Rate Ratio<br>(95% CI) |
|------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------------|
| Investigator's imputation method                                 | 3 (0 to 15)                                 | 4 (0 to 15)                            | NR                     |
| Sensitivity analyses from FDA using Negative binomial Regression | on                                          |                                        |                        |
| FDA sensitivity analysis: excludes non-completers with zero      | 3.3                                         | 4.1                                    | 0.80                   |
| crises recorded (n=206)                                          | (2.8 to 3.8)                                | (3.3 to 4.9)                           | (0.64 to 1.01)         |
| ITT population assuming crisis count for non-completers with     | 3.3                                         | 4.2                                    | 0.77                   |
| zero crises recorded was 0 (n=230)                               | (2.7 to 3.9)                                | (3.4 to 5.1)                           | (0.61 to 0.99)         |
| Multiple imputation for crisis counts in non-completers with     | 3.9                                         | 4.3                                    | 0.91                   |
| zero crises recorded, using information on treatment group,      | (3.3 to 4.5)                                | (3.2 to 5.4)                           | (0.73 to 1.12)         |
| study stratification factors, time on study, baseline age, and   |                                             |                                        |                        |
| baseline crisis count                                            |                                             |                                        |                        |

All FDA analyses take time on study into account control for study stratification factors (region of study site and baseline hydroxyurea use)

CI: confidence interval, NR: not reported, ITT: intention to treat

The median number of days to first SCD-related acute pain crisis was an unplanned analysis in the Phase III study. The results suggested that L-glutamine delayed the time to first crisis (median 84 days [95% CI 62.0 to 109.0]) compared to placebo (median 54 days [95% CI 31.0 to 73.0]; pvalue=0.0152). 16,61 The Phase II study reported a median of 64 days with L-glutamine versus 44 days with placebo (p=0.5861).61,65

An analysis of the incidence of ACS in the Phase III study was also unplanned but suggested a lower incidence among patients treated with L-glutamine (mean 0.1 [SD 0.37] versus 0.3 [SD 0.63] in the L-glutamine and placebo arms, respectively; 8.6% in the L-glutamine group vs. 23.1% in the placebo group experienced one or more episodes of ACS (p=0.003). 16,61 There were only two episodes of ACS in the Phase II study, so no analyses were performed. 61,65

#### Hospitalization

At Week 48, the median number of SCD-related hospitalizations in the Phase III trial was lower in the L-glutamine group than the placebo group (p=0.005).<sup>16</sup> The trial also reported fewer days spent in the hospital, but not fewer emergency department visits (Table 4.12.). Statistically significant differences in the mean number of hospitalizations were observed at Week 24 of the Phase II study (mean [SD] 0.8 [1.2] with L-glutamine vs. 1.3 [1.4] with placebo; p=0.04] but not Week 48. The mean number of emergency room visits did not statistically differ in the Phase II trial.

Table 4.12. Health Care Utilization in Phase III Trial of L-Glutamine through Week 48<sup>16</sup>

|                                                              | L-Glutamine (n=152) | Placebo (n=78) | p-value |
|--------------------------------------------------------------|---------------------|----------------|---------|
| No. of hospitalizations for SCD-related pain, median (range) | 2 (0-14)            | 3 (0-13)       | p=0.005 |
| No. of ED visits for SCD-related pain, median (range)        | 1 (0-12)            | 1 (0-15)       | p=0.09  |
| Cumulative no. of days in hospital, median (range)           | 6.5 (0-94)          | 11 (0-187)     | p=0.02  |

ED: emergency department, No.: number, SCD: sickle cell disease

# **Quality of Life**

The Phase II trial of L-glutamine planned to evaluate pediatric quality of life as an exploratory endpoint but did not perform any analyses due to the small number of pediatric patients who were enrolled. 61,65 The Phase III trial did not assess quality of life.

## **Markers of Hemolysis**

No significant differences were observed between groups in changes in hemoglobin, hematocrit level, or reticulocyte count in the Phase III trial of L-glutamine. 16

# **Subgroup Analyses**

The Phase III trial of L-glutamine performed subgroup analyses of the rate of SCD-related acute pain crises in patient groups defined by hydroxyurea use at baseline, sex, and age. 16 Due to the high level of early withdrawal from the study, and resulting uncertainties surrounding the imputation methods employed by study investigators, the FDA also analyzed the data from these subgroups by excluding the non-completers.<sup>61</sup> Results from both analyses are reported in Table 4.13. Overall, Lglutamine appeared to have a consistent treatment benefit across subgroups, although the rate of crises in pediatric patients (age ≤18) seemed to be similar in both treatment arms (estimated 3.3 vs 3.5 crises in the L-glutamine and placebo arms respectively).<sup>61</sup> A similar trend was observed in patients who received a lower dosage (analyzed by the FDA only) due to a lower body weight. Nevertheless, interaction tests to assess whether treatment efficacy differed between subgroups were not significant.

Table 4.13. Subgroup Analyses of Rate of Acute Pain Crises through 48 Weeks in the Phase III Trial of L-Glutamine

|                                    | Niihara 2018 <sup>16</sup> |                | FDA <sup>61</sup> |                |
|------------------------------------|----------------------------|----------------|-------------------|----------------|
|                                    | Rate Ratio                 | 95% CI         | Rate Ratio        | 95% CI         |
| Hydroxyurea Use at Baseline        | 0.77                       | NR             | 0.79              | (0.59 to 1.06) |
| No Hydroxyurea Use at Baseline     | 0.78                       | NR             | 0.83              | (0.58 to 1.21) |
| Male                               | 0.73                       | NR             | 0.71              | (0.50 to 1.02) |
| Female                             | 0.81                       | NR             | 0.86              | (0.63 to 1.17) |
| Age ≤18                            | 0.93                       | NR             | 0.95              | (0.69 to 1.29) |
| Age >18                            | 0.64                       | NR             | 0.67              | (0.48 to 0.94) |
| Dose <30 g/day                     | NR                         | NR             | 0.90              | (0.66 to 1.22) |
| Dose 30 g/day                      | NR                         | NR             | 0.58              | 0.43 to 0.79)  |
| 2 acute pain crises in prior year  | 0.87                       | (0.58 to 1.33) | NR                | NR             |
| 3-5 acute pain crises in prior     | 0.74                       | (0.53 to 1.04) | NR                | NR             |
| year                               |                            |                |                   |                |
| ≥6 acute pain crises in prior year | 0.82                       | (0.50 to 1.34) | NR                | NR             |

FDA: Food and Drug Administration, CI: confidence interval, NR: not reported

## Harms of L-Glutamine

The majority of SAEs observed with L-glutamine were considered to be unrelated to study treatment. A greater proportion of patients treated with L-glutamine experienced gastrointestinal disorders (constipation, nausea, vomiting), headache, pain in extremities, back pain, and noncardiac chest pain. Treatment discontinuation resulting from AEs was low with Lglutamine.

A total of three treatment-emergent deaths occurred in patients treated with L-glutamine during the Phase II and Phase III trials from sudden cardiac death and/or multiorgan failure. 16,61,65 These patients had a history of organ failure and comorbidities and the investigator did not determine the deaths to be related to the study drug. The FDA concluded that the role of L-glutamine in these deaths was unlikely but in the absence of autopsy findings, there was insufficient data available to be able to categorically rule it out. 61 FDA reviewers noted that the mortality rate observed in other clinical studies of patients with SCD was like that observed in the L-glutamine trials. However, the safety data on L-glutamine from trials in other conditions provides less reassurance. The REDOXS trial of critically ill patients with multiorgan failure reported that patients treated with 0.35 g/kg/day of IV glutamine had significantly higher in-hospital mortality and mortality at 6 months than patients who did not receive L-glutamine.66

In the Phase III trial, SAEs occurred in 78% of patients treated with L-glutamine versus 87% of placebo-treated patients. 16 The most common SAEs in the L-glutamine arm were considered to be related to SCD rather than treatment; these included sickle cell anemia with crisis (66%), ACS (7%), and pneumonia (5%).61 TEAEs that were considered by investigators to be related to study drug

occurred in 19% of patients treated with L-glutamine and 14% of patients treated with placebo. 61 SAEs that were deemed to be related to L-glutamine included hypersplenism (n=1), sickle cell anemia with crisis (n=1), abdominal pain (n=1), and chest pain (n=1).<sup>61</sup>

Discontinuation due to TEAEs was reported in 3% of the L-glutamine group and 1% of the placebo group. The most commonly reported AEs included gastrointestinal disorders (constipation, nausea, vomiting), headache, pain in extremity, back pain, and noncardiac chest pain (Table 4.14).

Table 4.14. AEs that occurred during the Phase III Trial of L-Glutamine<sup>16</sup>

|                         | L-Glutamine (n=151) | Placebo (n=78) |
|-------------------------|---------------------|----------------|
|                         | N (%)               | N (%)          |
| Constipation            | 38 (25.2)           | 19 (24.4)      |
| Nausea                  | 34 (22.5)           | 13 (16.7)      |
| Vomiting                | 22 (14.6)           | 10 (12.8)      |
| Abdominal pain upper    | 16 (10.6)           | 6 (7.7)        |
| Diarrhea                | 12 (7.9)            | 5 (6.4)        |
| Chest pain (noncardiac) | 21 (13.9)           | 7 (9.0)        |
| Fatigue                 | 9 (6.0)             | 1 (1.3)        |
| Urinary tract infection | 10 (6.6)            | 3 (3.8)        |
| Pain in extremity       | 24 (15.9)           | 6 (7.7)        |
| Back pain               | 20 (13.2)           | 5 (6.4)        |
| Headache                | 32 (21.2)           | 14 (17.9)      |
| Dizziness               | 8 (5.3)             | 4 (5.1)        |
| Nasal congestion        | 11 (7.3)            | 5 (6.4)        |
| Tachycardia             | 8 (5.3)             | 4 (5.1)        |

## **Uncertainty and Controversies**

## **Generalizability of Patient Populations Studied**

Because there are so few therapies available for patients with SCD, there may be a tendency to prescribe these three new therapies to similar patient populations. However, there are important patient subpopulations with SCD that may have different responses to each of the three therapies.

Although patients with SCD may experience their first acute pain crisis or other important clinical manifestation before their first birthday, very few children, and no infants were included in these studies. The youngest ages included in the available studies were 16 years for crizanlizumab, 12 years for voxelotor, and 5 years for L-glutamine. These inclusion criteria make it difficult to generalize results to pediatric patients with SCD, all of whom will likely experience anemia and/or pain. There are several ongoing trials of crizanlizumab and voxelotor (Appendix C), which are enrolling patients as young as 2 years of age. These trials should help to fill in some of the current knowledge gaps about the efficacy and safety of these agents in pediatric patients.

Patients in these trials differed by factors other than age. Most patients in the studies were homozygous for hemoglobin S, though a minority of patients with other genotypes such as hemoglobin  $S\beta^0$  or  $S\beta^+$  thalassemia, hemoglobin SC, and other variants were included. None of the trials reported details about subphenotypes. Because the majority enrollment was hbSS in the clinical trials, there are insufficient data available to determine whether the risk/benefit profile of the agents of focus differs across genotypic subpopulations.

The definition of acute pain crisis, baseline hemoglobin levels, and baseline number of pain crises also differed across studies. All of these factors are important as clinicians make prescribing decisions.

### Generalizability of Results Based on "Optimal Usual Care" Control Arms

It is evident from input from clinical experts and patient advocates that the quality and intensity of "usual care" delivered to patients in the control arms of the clinical trials we reviewed was far better than the usual care received by the vast majority of patients with SCD in the US. For example, approximately 63% of patients in the RCT of crizanlizumab received hydroxyurea, whereas our best estimates of real-world usual care suggest that at most 15% are likely to receive this drug. The level of attention given to hydration, oxygenation, transfusion needs, and other clinical aspects of care was likely far higher than the norm in real-world practice. This is the primary reason we have labeled usual care in this report as "optimal usual care."

How this lack of generalizability affects the magnitude of the relative benefits of treatment with these new interventions is difficult to judge. It seems likely, however, that any bias would be to reduce the magnitude of the incremental benefits measured for patients in the intervention arms of the clinical trials. The relative reduction in acute pain crises with crizanlizumab, for example, may prove to be higher in real-world practice between those patients who receive the drug and those who do not since those who do not are not receiving the background benefits of optimal usual care. On the other hand, it is perhaps equally possible that the magnitude of the benefits of the new agent seen in the clinical trials is only realized if other elements of background care are excellent, which would tend to reduce the incremental benefits of a drug like crizanlizumab if it is given in real-world practice as an adjunct to less than optimal usual care. What is certain, however, is that the introduction of new, effective treatments for SCD serves as an opportunity for the overall care of patients with SCD to be re-imagined and improved from top to bottom.

#### **Quality of Life**

None of the trials demonstrated an improvement in quality of life based on the instruments chosen by the investigators and studies for L-glutamine did not include any measures of quality of life. This is an especially important consideration in SCD as patients and caregivers have repeatedly reported

on the devastating impact of pain on their QOL. It also calls into the question the relevance to patients of the clinical benefits observed in the trials.

#### **Drop Out**

All studies reviewed had significant rates of attrition. If drop-out rates in real-world practice are even higher than those seen in the clinical trials, which is likely, it is possible that the magnitude of longer-term benefits seen with treatment in the studies would not be realized. Some clinical experts also expressed concern that sudden withdrawal or noncompliance with voxelotor might result in a high rate of hemolysis, potentially worsening vasculopathy. Other experts reported relatively poor compliance with L-glutamine in some of their patients due to the dosing regimen. There is currently no information on how to safely discontinue any of these medications should that be necessary.

## **Durability of Benefits**

At this time there is no data on the durability of the effects observed in the clinical trials. We do not know if positive effects will continue to be seen in patients over the course of several years or a lifetime.

## Long-term Safety

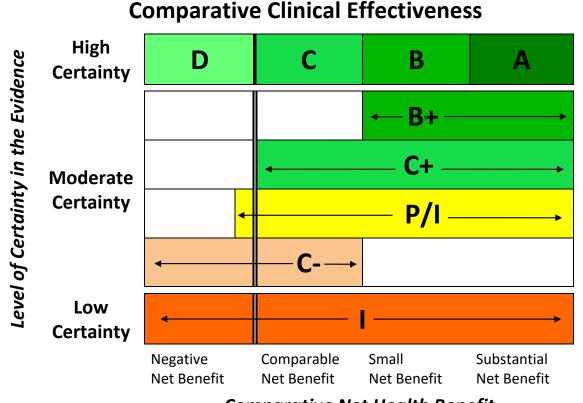
All three therapies are relatively new, each with a novel mechanism of action. We lack long-term safety data and it is possible that undetected safety events will be identified over time or that the benefit/risk profile might change over time. There is also uncertainty as to which subpopulations of patients may have an increased risk of AEs. For example, some clinical experts expressed concern about a potential risk of hyperviscosity in patients with relatively high levels of hemoglobin who might be prescribed voxelotor. Other experts were concerned about the safety implications of the differential drop-out rates in the L-glutamine trial.

## **Combination Therapy**

From a clinical perspective these therapies might be used in various combinations with hydroxyurea, chronic transfusion, and each other as they all have different mechanisms of action. Without data to help clinicians understand the optimal way to combine therapies, there is uncertainty about whether combination therapy represents an optimal approach for some patients or whether combining therapies will increase AEs (and costs) without commensurate clinical benefit.

## Impact of Therapy on Acute and Chronic Outcomes and Mortality

The full clinical benefit of these therapies is unclear. Although crizanlizumab reduced acute pain crises it is unclear if the reduction seen (approximately one fewer crises per year) is enough to produce a meaningful improvement in quality of life for patients. And although acute pain crises have been associated with an increased risk of other acute and chronic conditions, it is not possible to know at this time if treatment with crizanlizumab will decrease the rates of these conditions or will improve overall survival in treated patients. For all three treatments reviewed in this report there are reasons to be optimistic about beneficial long-term effects, and our economic model has made favorable assumptions about the linkage between short-term outcomes and longer-term health benefits. Nevertheless, there remains significant uncertainty about the true magnitude of the benefits that patients will receive.


For patients treated with voxelotor there is an additional concern that adds to the uncertainty about long-term benefits: the trial result demonstrating that while hemoglobin levels were modestly increased with treatment, pain crises were not decreased, nor was there any difference in quality of life. There was also a numerically higher rate of transfusion in the treated group compared to the placebo group, a puzzling finding given that voxelotor did increase average hemoglobin levels, but one most likely due to a higher rate of pain crises among treated patients. As with crizanlizumab, there are no data on whether treatment with voxelotor will improve acute or chronic complications of SCD or increase survival.

For patients treated with L-glutamine an additional layer of uncertainty is created by the significant differential drop-out rate that saw treated patients dropping out at a higher rate than patients receiving placebo. Furthermore, the impact of L-glutamine on pain crises differed based on the imputation method used to account for those patients who dropped out. As reported in Table 4.11 the investigator's imputation method resulted in a median count of 3 crises in those treated with L-glutamine versus 4 in those treated with placebo. However sensitivity analyses conducted by the FDA systematically adjusting for non-completers, study group, stratification factors, time on study, baseline age, and baseline crisis counts resulted in a median count of 3.9 crises in those treated with L-glutamine and 4.3 in those treated with placebo, with a rate ratio of 0.91 (0.73-1.12). Other imputation methods also conducted by FDA, with fewer adjustment factors resulted in median rates in between the investigator's rates and median rates using all adjustment factors. As with crizanlizumab and voxelotor, there are no data on whether treatment with L-glutamine will improve acute or chronic complications of SCD or increase survival.

# 4.4 Summary and Comment

Using the ICER Evidence Matrix (Figure 4.1.), we assigned independent evidence ratings for crizanlizumab, voxelotor, and L-glutamine, each compared to optimal usual care as defined by the placebo arm of their respective clinical trials.

Figure 4.1. ICER Evidence Rating Matrix



- Comparative Net Health Benefit
- A = "Superior" High certainty of a substantial (moderate-large) net health benefit
- B = "Incremental" High certainty of a small net health benefit
- **C = "Comparable"** High certainty of a comparable net health benefit
- **D = "Negative"** High certainty of an inferior net health benefit
- B+ = "Incremental or Better" Moderate certainty of a small or substantial net health benefit, with high certainty of at least a small net health benefit
- C+ = "Comparable or Better" Moderate certainty of a comparable, small, or substantial net health benefit, with high certainty of at least a comparable net health benefit
- **P/I = "Promising but Inconclusive"** Moderate certainty of a comparable, small, or substantial net health benefit, and a small (but nonzero) likelihood of a negative net health benefit
- C- = "Comparable or Inferior" Moderate certainty that the comparative net health benefit is either comparable or inferior
- I = "Insufficient" Any situation in which the level of certainty in the evidence is low

**Table 4.15. ICER Evidence Ratings** 

| Intervention  | ICER Evidence Rating |
|---------------|----------------------|
| Crizanlizumab | B+                   |
| Voxelotor     | P/I                  |
| L-Glutamine   | P/I                  |

# **Crizanlizumab versus Optimal Usual Care**

The primary source of evidence for our evaluation of crizanlizumab was a single Phase II trial (SUSTAIN).<sup>17</sup> Compared to optimal usual care, crizanlizumab statistically significantly reduced the rate of acute pain crises in patients with SCD and prolonged the time to first and second crisis. Patients treated with crizanlizumab experienced approximately one fewer pain crisis per year, from approximately 3 in optimal usual care to approximately 2 with treatment.

Although rates of acute pain crises were reduced, statistically significant improvements in the annual rate of days hospitalized and quality of life were not observed in the SUSTAIN trial. Questions about safety also remain. Crizanlizumab was relatively well-tolerated during SUSTAIN's 52-week treatment phase, however risks for long-term adverse outcomes are hard to judge, a problem common to all newly introduced treatments with a new mechanism of action. The FDA is requiring several postmarketing studies, including a clinical trial to assess the risk of infusion-related reactions and immunogenicity, bleeding complications, and infections.

Overall, we judged that the statistically significant reduction in pain crises was enough to give adequate certainty that crizanlizumab will provide a positive net health benefit. However, the difficulty in estimating the amount of longer-term organ system benefit conveyed by this relatively modest absolute reduction in acute pain crises, coupled with uncertainty about long-term safety, gives us only moderate certainty overall in the magnitude of net health benefit, which seems likely to range from small to moderate, a "B+" rating in the ICER Evidence Matrix.

# **Voxelotor versus Optimal Usual Care**

Compared to optimal usual care alone, voxelotor improved laboratory parameters, including an increase in hemoglobin and reductions in hemolysis markers such as bilirubin and percent reticulocytes. But voxelotor did not significantly reduce the annualized incidence rate of acute pain crises and did not improve quality of life. Annualized incidence rates of acute pain crises were very similar across the voxelotor arms and placebo arms, such that the best suggestion of a trend toward improvement might be an approximate risk reduction of 13% with a confidence interval that crosses one (incidence rate ratio 0.87 [95% CI 0.61 to 1.23]); a longer duration of follow-up will be necessary to determine whether voxelotor improves this important outcome. Although the rate of acute pain crises and quality of life were secondary outcomes, they are important outcomes to

patients and linking an increase in hemoglobin levels to these or other patient-important outcomes will be helpful over time. We did not identify any data related to health care utilization for voxelotor that would indicate a reduction in transfusions. Although it seems logical to assume that for some patients there will be reductions in transfusions over time, the clinical trial reported more transfusions in the group who received voxelotor than in the placebo group.

Does an increase of 1g/dL of hemoglobin improve short or long-term health outcomes? There are reasons on both sides of this question. From some clinical experts we heard that even 1g of hemoglobin can reduce patient fatigue and likely reduce the risks for specific longer-term harms such as high-output congestive heart failure. It is also likely that some patients will get far more than the average 1g improvement in hemoglobin, and therefore benefit greatly, even though the available data do not allow us to identify the heterogeneity of treatment effect in the clinical trial.

Separate from questions about increases in hemoglobin is the extent to which reduction in hemolysis improves short or long-term outcomes. Again, some clinical experts feel there are strong correlational data to support the benefits of reduced hemolysis. For example, several studies have shown higher rates of leg ulcers, priapism, renal dysfunction, stroke and mortality with higher rates of hemolysis and hemolytic byproducts, and there may be broader clinical implications as well. But on the other side of this issue lies the uncertainty of whether there is a threshold of reduced hemolysis required to achieve clinical benefit, and the short-term data available make it impossible to determine the answer to this question.

Safety issues, including rates of SAEs and treatment discontinuation due to an AE were relatively low in the HOPE trial. Further study of the long-term safety of voxelotor, however, is required.

Overall, we felt that it was difficult to ascertain the net health benefit of voxelotor with available data at its launch. Nonetheless, we feel that there is less than a 10% chance that treatment will lead to net harm over a broad population. Given that we cannot determine the magnitude of the clinical benefits but feel they are likely to be somewhat greater than usual care, we have assigned a rating of "Promising but Inconclusive" (P/I) to the comparative clinical effectiveness of voxelotor at this time.

# L-Glutamine versus Optimal Usual Care

The Phase II and Phase III trials of L-glutamine showed reductions in the number of acute pain crises and hospitalizations, although these results were not robust to different analytic methods needed to account for a large and differential rate of trial withdrawal across treatment arms. This led the FDA to conclude that results trended in favor of L-glutamine but that the magnitude of benefit was likely modest. L-glutamine is considered to have a relatively benign safety profile, with few SAEs in the Phase III trial determined to be related to therapy. Nevertheless, a trial of intravenously administered L-glutamine in critically ill patients (without SCD) with multiorgan failure found that L-

glutamine increased mortality. Overall, there were problems with the conduct and analyses of the available phase II and phase III trials that lead to uncertainty about the magnitude of clinical benefit as well as some *a priori* safety concerns from the use of L-glutamine in other clinical settings. Additionally, we identified two phase II trials of L-glutamine that met our inclusion criteria but for which the results were not published, raising concerns about publication bias.

Overall, we judged that the findings on clinical benefit are too uncertain to allow a clear determination of their magnitude, but it appears most likely that L-glutamine does provide some clinical benefit. However, with residual safety concerns and uncertainty about the clinical benefits due to trial limitations, we feel there remains a small risk that L-glutamine produces net harm overall, but that this risk is less than 10%. In our view, therefore, we rate the evidence on the comparative clinical effectiveness of L-glutamine to be "Promising but Inconclusive" (P/I) within the parameters of the ICER Evidence Matrix.

# 5. Long-Term Cost Effectiveness

## 5.1 Overview

The primary aim of this analysis was to estimate the lifetime cost effectiveness of treatments for SCD using a decision analytic model. Crizanlizumab, L-glutamine and voxelotor, each combined with optimal usual care, were compared to optimal usual care alone. The model estimates outcomes that include life years gained, quality-adjusted life years (QALYs) gained, equal value life years gained (evLYGs), clinical events, pain crises avoided, change in hemoglobin, and total costs for each intervention over a lifetime time horizon. The base-case analysis used a health care sector perspective (i.e., direct medical care costs only), and a lifetime time horizon. We also modeled a variety of scenarios beyond the base case, including a modified societal perspective. (See Appendix Table E1 for an inventory of items included in the health care sector and modified societal perspective analyses.) All costs and outcomes were discounted at 3% per year.

This model focuses on improvements in both quality of life and length of life. SCD has a large impact on patients' psychosocial well-being. Many of these impacts are captured in the outcomes and measures of quality of life included in the model. It is important to note that economic models such as this one cannot capture the full psychosocial impact of systemic issues such as racism that may impact underserved populations such as patients with SCD. It is also unclear what impact treatments for these populations will have on those systemic issues, or vice versa. Further improvements from treatments for SCD that may not be captured by the model are discussed in other sections of the report.

The analytic framework for this assessment is depicted in Figure 5.1 below.

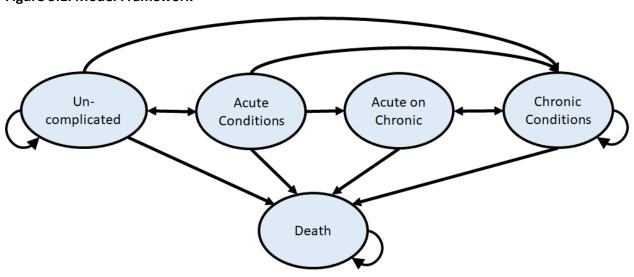



Figure 5.1. Model Framework

## 5.2 Methods

We developed a *de novo* decision analytic model for this evaluation, informed by the SUSTAIN trial, HOPE trial, and Niihara et al. 2018, relevant quality of life literature, and other prior economic models. The model was developed in Microsoft Excel for Office MSO (ver. 16.0.11328.20390 64-bit).

## **Model Structure**

The model (Figure 5.1) is a cohort-level, Markov simulation of costs, quality of life, clinical events, and mortality associated with SCD among children and adults in the US diagnosed with the disease, using a 2-week cycle length. This modeling approach was chosen due to the chronic nature of disease and the multiple re-occurring events in SCD. The model focuses on transitions between acute and chronic health states, as well as including the risk of death. The acute and chronic conditions considered in the model are listed in Table 5.1. Treatments that delay or avoid acute and chronic conditions will improve patients' health and health care costs. Evidence of treatment effects on acute pain crises and level of hemoglobin come directly from the trials. The model included the impact of these treatment effects on other acute and chronic outcomes. Evidence linking the relationship between acute pain crises and levels of hemoglobin to other acute and chronic conditions come from multiple sources (detailed below), as these were not directly measured in the clinical trials. In the model, an acute pain crisis is defined similarly to the trial definitions and includes hepatic sequestration, splenic sequestration, and priapism; ACS was modelled separately.

Table 5.1. Acute and Chronic Conditions Included in the Model

| Clinical Outcomes                                                                                                    |                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ischemia-Related Outcomes                                                                                            |                                                                                                                                    |  |  |
| Acute                                                                                                                | Chronic                                                                                                                            |  |  |
| Acute Pain Episode (including hepatic                                                                                | Opioid Tolerance/Dependence                                                                                                        |  |  |
| sequestration, splenic sequestration and priapism)                                                                   |                                                                                                                                    |  |  |
| Acute Chest Syndrome                                                                                                 | Pulmonary Hypertension                                                                                                             |  |  |
| Myocardial Infarction (MI)                                                                                           | Heart Failure                                                                                                                      |  |  |
| AKI/Renal Infarction                                                                                                 | Nephropathy, Chronic Kidney Disease                                                                                                |  |  |
| Stroke                                                                                                               | Neurocognitive Impairment                                                                                                          |  |  |
| Mortality                                                                                                            | Mortality                                                                                                                          |  |  |
| Anemia-Rela                                                                                                          | red Outcomes                                                                                                                       |  |  |
| Acute                                                                                                                |                                                                                                                                    |  |  |
| Acute                                                                                                                | Chronic                                                                                                                            |  |  |
| Acute Pain Episode (including hepatic                                                                                | Chronic Opioid Tolerance/Dependence                                                                                                |  |  |
|                                                                                                                      |                                                                                                                                    |  |  |
| Acute Pain Episode (including hepatic                                                                                |                                                                                                                                    |  |  |
| Acute Pain Episode (including hepatic sequestration, splenic sequestration and priapism)                             | Opioid Tolerance/Dependence                                                                                                        |  |  |
| Acute Pain Episode (including hepatic sequestration, splenic sequestration and priapism) Acute Chest Syndrome        | Opioid Tolerance/Dependence Pulmonary Hypertension                                                                                 |  |  |
| Acute Pain Episode (including hepatic sequestration, splenic sequestration and priapism) Acute Chest Syndrome Stroke | Opioid Tolerance/Dependence Pulmonary Hypertension Heart Failure                                                                   |  |  |
| Acute Pain Episode (including hepatic sequestration, splenic sequestration and priapism) Acute Chest Syndrome Stroke | Opioid Tolerance/Dependence  Pulmonary Hypertension  Heart Failure  Nephropathy, Chronic Kidney Disease                            |  |  |
| Acute Pain Episode (including hepatic sequestration, splenic sequestration and priapism) Acute Chest Syndrome Stroke | Opioid Tolerance/Dependence  Pulmonary Hypertension  Heart Failure  Nephropathy, Chronic Kidney Disease  Neurocognitive Impairment |  |  |

pRBC: packed red blood cells

# **Target Population**

The base-case model uses the average of the median ages reported in the trials, 24 years. The proportion of females used in the model was 52%, as this was reported in both the HOPE and SUSTAIN trials. The base-case model evaluated a population with a baseline rate of 3 acute pain crises per year. Prevalence of chronic conditions was estimated by using the Markov model to simulate a cohort of patients from birth to the starting age of the analysis. For instance, to estimate the prevalence of each chronic condition at age 24 years, the Markov model was run from birth for 24 years, and the proportion of patients in each chronic condition at 24 years was reported and then used in the base-case analysis. In scenario analyses, we explored results for younger populations, beginning treatment at age 16. We also include subgroup analyses based on frequency of acute pain crises. The demographic and clinical characteristics of the patient population for our analyses are summarized and compared to those reported in the trials in Table 5.2.

Table 5.2. Base-Case Model Cohort Characteristics

|                                            | Model Inputs<br>for Base Case | Standard of Care in SUSTAIN trial <sup>17</sup> | Standard of Care in<br>HOPE trial <sup>59</sup> | Standard of Care in<br>Niihara 2018 trial <sup>16</sup> |
|--------------------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| Age at enrollment                          | 24                            | 16                                              | 12                                              | 5                                                       |
| Median age (years)                         |                               | 29                                              | 24                                              | 19                                                      |
| Female, %                                  | 52                            | 52                                              | 64                                              | 52                                                      |
| Frequency of Acute Pain Crises (per year)  | 3                             | 2.98                                            | 3.19                                            | 4.3                                                     |
| Prevalence of Chronic Conditions           |                               |                                                 |                                                 |                                                         |
| Opioid Tolerant/Dependent (per<br>1000)    | 18                            | NR                                              | NR                                              | NR                                                      |
| Pulmonary Hypertension (per<br>1000)       | 342                           | NR                                              | NR                                              | NR                                                      |
| Heart Failure (per 1000)                   | 130                           | NR                                              | NR                                              | NR                                                      |
| Chronic Kidney Disease (per<br>1000)       | 214                           | NR                                              | NR                                              | NR                                                      |
| Post-stroke (per 1000)                     | 243                           | NR                                              | NR                                              | NR                                                      |
| Neurocognitive Impairment alone (per 1000) | 63                            | NR                                              | NR                                              | NR                                                      |
| Fatigue alone (per 1000)                   | 285                           | NR                                              | NR                                              | NR                                                      |

NR: not reported

# **Treatment Strategies**

The list of treatment strategies was developed with input from patient organizations, clinicians, manufacturers, and payers, and were chosen to optimal reflect real-world treatment decisions and those in the clinical trials. The list of interventions is presented below:

- Crizanlizumab in addition to optimal usual care
- Voxelotor in addition to optimal usual care
- L-glutamine in addition to optimal usual care

In the main analysis each intervention is compared to optimal usual care, which can include hydroxyurea and/or acute and chronic transfusions. As noted previously, optimal usual care here is meant to correspond to the treatment received in the comparator arms of the trials, and may differ from the care received by many patients in actual practice.

Doses for each treatment used in the model are shown in Table 5.3. Given that some of the treatments are weight-based, the doses of treatments change over time as the modeled population ages and the average weight increases.

**Table 5.3. Treatment Regimen Modeled Dosages** 

| Generic Name            | Crizanlizumab                                                 | Voxelotor                 | L-glutamine               |
|-------------------------|---------------------------------------------------------------|---------------------------|---------------------------|
| Brand Name              | Adakveo                                                       | Oxbryta                   | Endari                    |
| Generic Name            | Crizanlizumab                                                 | Voxelotor                 | L-glutamine               |
| Manufacturer            | Novartis                                                      | Global Blood Therapeutics | Emmaus Life Sciences      |
| Route of Administration | Intravenous                                                   | Oral                      | Powder, for oral solution |
| Dosing                  | 5.0 mg/kg, administered at weeks 0, 2, and then every 4 weeks | 1500 mg, once daily       | 5-15 grams, twice daily   |

mg: milligram, kg: kilogram

# **Key Model Characteristics and Assumptions**

Key model assumptions are listed in Table 5.4, along with the rationale for each. In general, where there was uncertainty in the evidence, we made assumptions that tended to favor the treatments.

**Table 5.4. Key Model Assumptions** 

| Assumptions                                                                                                                                                           | Rationale                                                                                                                                                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Risk factors were multiplicative, i.e. risk factors were                                                                                                              | To estimate the likelihood of an event for those with                                                                                                                                                                                     |  |
| multiplied together to estimate a combined risk                                                                                                                       | multiple risk factors and to avoid the probability of an                                                                                                                                                                                  |  |
| factor.                                                                                                                                                               | event being greater than 1.                                                                                                                                                                                                               |  |
| Health-related quality of life is multiplicative.                                                                                                                     | To estimate the health-related quality of life of patients with multiple health states, it is recommended that a multiplicative assumption is used to reflect overlap in symptoms and to avoid implausibly low quality of life estimates. |  |
| All discontinuation occurs within the first year of treatment.                                                                                                        | The trials report discontinuation at 48 or 52 weeks. It is assumed that patients that stay on treatment for 1 year will remain on treatment.                                                                                              |  |
| Opioid tolerance or dependence was only possible                                                                                                                      | This assumption was instituted to recognize a potential                                                                                                                                                                                   |  |
| after patients had experienced 3 acute pain crises.                                                                                                                   | consequence of the accumulation of acute pain crises.                                                                                                                                                                                     |  |
| The effects of baseline treatment (i.e., chronic transfusion, hydroxyurea, chelation therapy, etc.) were assumed to be captured in the optimal usual care population. | Treatment rates in the source population used for optimal usual care were similar to those for populations reported in the literature.                                                                                                    |  |
| Treatment-related adverse events were treated with                                                                                                                    | Treatment-related adverse events reported in the trials                                                                                                                                                                                   |  |
| a physician visit, but were not modeled as having a                                                                                                                   | were expected to be transitory and treatable with over-                                                                                                                                                                                   |  |
| significant effect on the health-related quality-of-life.                                                                                                             | the-counter medication or a visit to the physician.                                                                                                                                                                                       |  |
| Model results represent a mixed genotype population.                                                                                                                  | Model inputs are not available from data and published literature by genetic mutation. Treatment effects from the trials are representative of a mixed genotype population.                                                               |  |

# **Model Inputs**

## Clinical Inputs – Use of Real-World Data

A comprehensive literature review was undertaken to identify baseline rates of acute and chronic conditions of interest for the comparative cost-effectiveness model. Since the majority of patients with SCD receive health care coverage under Medicaid and/or Medicare, baseline rates were taken from CMS data when possible. The CMS report<sup>67</sup> summarized all patients with SCD over the age of 18 years with Medicare coverage as well as dual Medicaid and Medicare coverage.

Rates for baseline conditions of interest not available through CMS data reports, incidence rates of acute and chronic conditions in the model, and actual costs of both acute and chronic events were obtained through de novo evidence generation from a series of analyses using the Aetion Evidence Platform on a MarketScan claims dataset using the most recent data available, from Dec 31, 2002 to Dec 31, 2017. The Truven MarketScan databases capture longitudinal, individual-level administrative claims data from the United States. The data available for this study included the Commercial Claims and Encounters (CCAE) Database and Medicare Supplemental and Coordination of Benefits Database, IBM MarketScan Research Databases for Life Sciences Researchers. 68 (See Appendix F for full study protocol). Data from the Truven MarketScan database covered approximately one-third of patients in the US with SCD and demonstrated a patient geographic distribution across the US in a similar pattern to the CMS data.

Baseline annual rates of acute and chronic events used in the model are presented in Tables 5.5 through 5.9 below. Inputs not available from the CMS report or MarketScan data were obtained from the literature.

Table 5.5. Baseline Rates of Acute Chest Syndrome by Age

| Age   | Mean  | Lower | Upper | Source <sup>68</sup> |
|-------|-------|-------|-------|----------------------|
| 0-1   | 0.075 | 0.07  | 0.09  | MarketScan           |
| 2-4   | 0.101 | 0.09  | 0.12  | MarketScan           |
| 5-12  | 0.107 | 0.10  | 0.11  | MarketScan           |
| 13-17 | 0.092 | 0.09  | 0.11  | MarketScan           |
| 18+   | 0.051 | 0.049 | 0.053 | MarketScan           |

Table 5.6. Baseline Rates of Stroke by Age\*

| Age   | Mean  | Lower | Upper | Source <sup>68</sup> |
|-------|-------|-------|-------|----------------------|
| 0-1   | 0.005 | 0.00  | 0.01  | MarketScan           |
| 2-5   | 0.007 | 0.00  | 0.01  | MarketScan           |
| 6-9   | 0.010 | 0.008 | 0.012 | MarketScan           |
| 10-19 | 0.011 | 0.01  | 0.02  | MarketScan           |
| 20+   | 0.021 | 0.020 | 0.023 | MarketScan           |

<sup>\*</sup>It was assumed that 35% of strokes would be major strokes resulting in more severe outcomes and higher costs.

Table 5.7. Baseline Rates of Myocardial Infarction by Age

| Age   | Mean   | Lower  | Upper  | Source <sup>68</sup> |
|-------|--------|--------|--------|----------------------|
| 0-12  | 0.000  | 0.000  | 0.000  | MarketScan           |
| 13-17 | 0.0009 | 0.0004 | 0.0017 | MarketScan           |
| 18+   | 0.0069 | 0.0062 | 0.0077 | MarketScan           |

Table 5.8. Baseline Rates of AKI/Renal Infarction by Age

| Age  | Mean   | Lower  | Upper  | Source <sup>68</sup> |
|------|--------|--------|--------|----------------------|
| 0-17 | 0.000  | 0.000  | 0.000  | MarketScan           |
| 18+  | 0.0006 | 0.0004 | 0.0009 | MarketScan           |

**Table 5.9. Baseline Chronic Complication Risks** 

| Complication                 | Mean          | Source                              |  |
|------------------------------|---------------|-------------------------------------|--|
| Opioid tolerance/dependence* | 0.011         | Elander et al. 2003 <sup>69</sup>   |  |
| Neurocognitive impairment    | 0.04          | Schatz et al. 2001 <sup>70</sup>    |  |
| Fatigue                      | 0.18          | Vichinsky et al. 2019 <sup>59</sup> |  |
|                              | Pulmonary hyp | ertension                           |  |
| Age 0-1                      | 0.0176        |                                     |  |
| Age 2-4                      | 0.0176        |                                     |  |
| Age 5-12                     | 0.0176        |                                     |  |
| Age 13-17                    | 0.0176        | CMS 2016 <sup>71</sup>              |  |
| Age 18-30                    | 0.0176        | CIVIS 2010                          |  |
| Age 31-45                    | 0.0609        |                                     |  |
| Age 46-54                    | 0.1598        |                                     |  |
| Age 55-64                    | 0.2018        |                                     |  |
| Age 65+                      | 0.2289        |                                     |  |
|                              | Heart fail    | ure                                 |  |
| Age 0-1                      | 0.0033        | MarketScan <sup>68</sup>            |  |
| Age 2-4                      | 0.0035        | MarketScan <sup>68</sup>            |  |
| Age 5-12                     | 0.0022        |                                     |  |
| Age 13-17                    | 0.0075        |                                     |  |
| Age 18-30                    | 0.0075        |                                     |  |
| Age 31-45                    | 0.0320        |                                     |  |
| Age 46-54                    | 0.0772        | CMS 2016 <sup>71</sup>              |  |
| Age 55-64                    | 0.0785        |                                     |  |
| Age 65+                      | 0.0632        |                                     |  |
|                              | Nephropath    |                                     |  |
| Age 0-1                      | 0.0038        | MarketScan <sup>68</sup>            |  |
| Age 2-4                      | 0.0035        | MarketScan <sup>68</sup>            |  |
| Age 5-12                     | 0.0077        | MarketScan <sup>68</sup>            |  |
| Age 13-17                    | 0.0143        | MarketScan <sup>68</sup>            |  |
| Age 18-30                    | 0.0143        | MarketScan <sup>68</sup>            |  |
| Age 31-45                    | 0.0381        |                                     |  |
| Age 46-54                    | 0.0945        | CMS 2016 <sup>71</sup>              |  |
| Age 55-64                    | 0.1015        |                                     |  |
| Age 65+                      | 0.0974        |                                     |  |

<sup>\*</sup>Opioid tolerance/dependence was estimated for patients that had experienced 3 or more acute pain crises in a year.

## Risk Factors and Correlations Between Conditions

An attempt was made to capture the risks of the different acute and chronic conditions. This was considered particularly important due to the multifaceted nature of the disease. Where available in the published literature, risk factors correlating each of the conditions were included in the model, as shown in Table 5.10. Much of the data demonstrated associations between conditions, rather than causation. In the base-case model, we made the assumption that these correlations would be causative to model the potential benefit of these treatments beyond the outcomes reported in the trials.

**Table 5.10. Risk Factors for Acute and Chronic Conditions** 

| Determinant            | Consequence           | Relative Effect | Source                            |
|------------------------|-----------------------|-----------------|-----------------------------------|
| Pulmonary hypertension | Acute Chest Syndrome  | 1.74            | Agarwal et al. 2018 <sup>72</sup> |
| Pulmonary hypertension | AKI/Renal infarction  | 1.70            | Yeruva et al. 2016 <sup>73</sup>  |
| Nephropathy/CKD        | AKI/Renal infarction  | 2.00            | Yeruva et al. 2016 <sup>73</sup>  |
| Heart failure          | AKI/Renal infarction  | 1.70            | Yeruva et al. 2016 <sup>73</sup>  |
| Nephropathy/CKD        | Myocardial infarction | 2.26            | Kokubo et al. 2009 <sup>74</sup>  |
| Pulmonary hypertension | Stroke                | 2.52            | Agarwal et al. 2018 <sup>72</sup> |
| Nephropathy/CKD        | Stroke                | 1.25            | Lee et al. 2010 <sup>75</sup>     |
| AKI/Renal infarction   | Nephropathy/CKD       | 3.00            | Yeruva et al. 2016 <sup>73</sup>  |
| Myocardial infarction  | Heart Failure         | 2.67            | Tofovic et al. 2017 <sup>76</sup> |

AKI: acute kidney injury, CKD: chronic kidney disease

For example, pulmonary hypertension and chronic kidney disease are correlated with, and are considered in the model as risk factors for, stroke. In the model, those with pulmonary hypertension were 2.52 times more likely to experience stroke, those with CKD were 1.25 times more likely to experience a stroke. To estimate the likelihood of an event for those with multiple risk factors, we assumed that the risk was multiplicative, i.e., risk factors were multiplied together to estimate a combined risk factor.

The above risk factors were applied to the baseline rates previously reported. The use of these risk factors resulted in a population similar to that reported by CMS in 2016<sup>67</sup> (see the validation section below).

### **Mortality Probabilities**

Annual mortality probabilities were estimated from Hassell et al. 2010 (Appendix Table E2). The model allows for increases in mortality due to acute pain crises, ACS, myocardial infarction, AKI/renal infarction, pulmonary hypertension, heart failure, chronic kidney disease, and stroke. To risk adjust the mortality probabilities for each additional risk factor in the model, the age-specific estimates from the literature were divided by the risk of death from each of the chronic conditions.

$$\frac{\textit{Death Age}}{(\textit{pHTN}_{RF} \times \textit{HF}_{RF} \times \textit{CKD}_{RF})}$$

pHTN: pulmonary hypertension, HF: heart failure, CKD: chronic kidney disease, RF: risk factor for death

The annual relative effect of acute pain crises was found to range from 1.2 to 2.68<sup>77-79</sup> and ACS from 1.03 to 1.5<sup>79,80</sup> (Table 5.11). A relative effect of 1.2 was used for acute pain crises, as it best represented the annual risk of death per event. Using the baseline annual risk of death estimated from Hassell et al. 2010, the annual risk was converted to a 2-week risk to reflect the cycle length of the model. This conversion means that deaths that would really happen over the year occur in the model during the two-week cycle in which the acute pain crisis occurs; this has the effect of decreasing life-expectancy after an acute pain crisis. The same conversion was used for ACS using the average of the two published risk factors. There is also an increased probability of death included in the model for those who experience a stroke. In the first two weeks after a stroke there is a 0.074 probability of death. No published risk factors were found for heart failure or myocardial infarction in patients with SCD, so it was assumed that these risk factors were the same as for pulmonary hypertension. The results of combining these data are reported in the validation section below.

Table 5.11. Risk Factors for Death

| Complication           | Relative Effect | Source                                                               |
|------------------------|-----------------|----------------------------------------------------------------------|
| Acute pain crisis      | 1.2             | Darbari et al. 2013 <sup>78</sup>                                    |
| Acute chest syndrome   | 1.27            | Average of Platt et al. 1994 and Maitra et al. 2017 <sup>79,80</sup> |
| Myocardial infarction  | 12.57           | Assumption                                                           |
| AKI/Renal infarction   | 9.57            | Lanzkron et al. 2013 <sup>81</sup>                                   |
| Pulmonary hypertension | 12.57           | Gladwin et al. 2012 <sup>82</sup>                                    |
| Heart failure          | 12.57           | Assumption                                                           |
| Nephropathy, CKD       | 9.57            | Lanzkron et al. 2013 <sup>81</sup>                                   |

AKI: acute kidney injury, CKD: chronic kidney disease

Risk factors for death are applied during each cycle that a patient is considered to have the health state. Once a chronic condition occurs, the patients will have it for life, so the risk factor is applied in every cycle for the rest of their life. For acute conditions, they are applied for the cycle in which the acute condition occurs, but then patients go back to having the baseline probability of death. This mean that when a patient with heart failure has a myocardial infarction, they have the risk factor for both myocardial infarction and heart failure for that cycle and then go back to having only the heart failure risk.

## Treatment Effect

We used treatment effects from the clinical trials (Table 5.12). Each trial reported the relative effect of treatment on acute pain crises. In the base-case analysis, the reported magnitude of effect for voxelotor was used, although the trial results were not statistically significant. The relative effect on acute pain crisis was used directly in the model. Despite the lack of information of treatment effect on other outcomes of interest, we assumed that acute events and chronic conditions could also be impacted by reducing the number of acute pain crises. Voxelotor was the only treatment to report a statistically significant difference in hemoglobin. The model was programmed to also allow for the effect of changes in hemoglobin on risk for acute and chronic conditions. The relative effect of hemoglobin level on stroke, fatigue, chronic kidney disease, and pulmonary hypertension were obtained from the literature and included in the model.

**Table 5.12. Treatment Effects** 

| Treatments    | Relative Effect on Acute Pain Crises | Change in Hemoglobin (g/dL) | Source                                         |
|---------------|--------------------------------------|-----------------------------|------------------------------------------------|
| Crizanlizumab | 0.547                                | 0                           | SUSTAIN trial <sup>17</sup>                    |
| Voxelotor     | 0.868                                | 1.2                         | HOPE trial <sup>59</sup>                       |
| L-glutamine   | 0.910                                | 0                           | FDA Multiple Imputation Analysis <sup>61</sup> |

g/dL: grams per deciliter

The effect of acute pain crises on acute events and chronic conditions were found in the literature, and are shown in Table 5.13. For example, patients who experience an acute pain crisis are 58.67 times more likely to have an ACS in the next cycle and patients who experience an acute pain crisis are 4.12 time more likely to develop pulmonary hypertension in the next cycle.

Table 5.13. Acute Pain Crisis as a Risk Factor for Acute and Chronic Conditions Used in the Model

| Treatments             | Risk Factor Used<br>in Model | Source                              |
|------------------------|------------------------------|-------------------------------------|
|                        | Acute Ev                     | ents                                |
| Acute chest syndrome   | 58.67                        | Shah et al. 2019 <sup>77</sup>      |
| Myocardial infarction  | 3.00                         | Bode-Thomas 2011 <sup>83</sup>      |
| AKI/Renal infarction   | 3.00                         | Assumption                          |
| Stroke                 | 2.26                         | Shah et al. 2019 <sup>77</sup>      |
|                        | Chronic Cor                  | nditions                            |
| Pulmonary hypertension | 4.12                         | Shah et al. 2019 <sup>77</sup>      |
| Heart Failure          | 1.185                        | Van Tuijn et al. 2010 <sup>84</sup> |
| Nephropathy, CKD       | 1.185                        | Van Tuijn et al. 2010 <sup>84</sup> |

AKI: acute kidney injury, CKD: chronic kidney disease

The relative effect of hemoglobin level on stroke and fatigue were obtained from the literature and included in the base case of the model. The reported difference of 1.2 g/dL for voxelotor was used

in the model. It was assumed there would be a constant treatment effect as long as patients continued to use voxelotor, i.e., that patients maintained a 1.2 g/dL effect as long as they continued treatment. To estimate the effect of 1.2 g/dL change in hemoglobin, the effect size was assumed to be exponential:

$$RE^H = 0.602^{1.2} = 0.544$$

where RE is the relative effect reported in the literature and H is the hemoglobin difference reported in the trial (Table 5.14).

There was mixed evidence on the relation between hemoglobin level and chronic kidney disease and pulmonary hypertension. One study suggested that lower hemoglobin was associated with hyperfiltration; however no data were reported. Another study showed no difference in hemoglobin levels between patients with normoalbuminuria and those with micro- or macroalbuminuria. Mixed results were reported on the association of hemoglobin and eGFR. Derebail et al. used a multiregression analysis and reported that a 1 g/dL increase in hemoglobin was associated with 0.64 odds of chronic kidney disease in hemoglobin SC disease and sickle- $\beta$ +-thalassemia but no effect in homozygous SCD or sickle- $\beta$ 0-thalassemia. To capture the possibility of an effect on chronic kidney disease, we assumed that a 1 g/dL increase in hemoglobin would decrease the risk of chronic kidney disease by a factor of 0.64. Adjusted for a 1.2 g/dL increase, this resulted in a risk factor of 0.56.

We also explored the effect of hemoglobin changes on pulmonary hypertension. Generally, studies evaluated the difference between those with less than 2.5 m/s tricuspid regurgitant jet velocity and those with 2.5 or more. Four studies showed no statistically significant differences in average hemoglobin between groups. <sup>89-92</sup> One study found that for every 1.0 g/dL increase in hemoglobin, TRV decreased by 13%. <sup>93</sup> To capture the possibility of an effect on pulmonary hypertension, we used the results of a meta-regression which reported a 1% (95%CI, -8% to 6%) higher prevalence of tricuspid regurgitant velocity of 2.5 m/s or greater. This 1% difference was reported for a population with an average age of 22 years, so an annual difference was estimated by assuming the difference would accumulate over the 22 years and then be constant for a patient's life.

Table 5.14. Effects of a 1 g/dL Change in Hemoglobin

| Condition              | Relative Effect | Effect for Voxelotor Used in Model | Source                                   |
|------------------------|-----------------|------------------------------------|------------------------------------------|
| Stroke                 | 0.602           | 0.544                              | Ohene-Frempong et al. 1998 <sup>94</sup> |
| Fatigue                | 0.06            | 0.034                              | Vichinsky et al. 2019 <sup>59</sup>      |
| Nephropathy, CKD       | 0.62            | 0.56                               | Derebail et al. 2019 <sup>88</sup>       |
|                        |                 |                                    |                                          |
|                        |                 |                                    |                                          |
| Pulmonary hypertension | 0.0005          | 0.0006                             | Caughey et al. 2015 <sup>89</sup>        |

CKD: chronic kidney disease

### AEs

We included serious treatment-related adverse events in the model as reported in the respective clinical trials (Table 5.15). Each AE was assumed to require a physician visit at a cost of \$175 per visit, based on the cost of a level 5 physician visit. We did not model any quality of life impacts due to AEs, as these were generally transitory.

**Table 5.15. Treatment-Related Adverse Events** 

| Treatment                    | Treatment-related Adverse Events | Comment                                        | Source                             |  |
|------------------------------|----------------------------------|------------------------------------------------|------------------------------------|--|
| Crizanlizumab                | 0.15                             | Annual rate of serious                         | Kutlar et al. 2019 <sup>58</sup>   |  |
| Placebo arm of SUSTAIN trial | 0.05                             | AEs during the trial                           |                                    |  |
| Voxelotor                    | 0.034                            | Proportion of patients                         | Vichisky et al. 2019 <sup>59</sup> |  |
| Placebo arm of HOPE trial    | 0.011                            | that experienced a serious AE during the trial |                                    |  |
| L-glutamine                  | 0.021                            | Proportion of patients                         | L-Glutamine Sponsor                |  |
| Placebo arm of trial         | 0.018                            | that experienced a severe AE during the trial  | Briefing Document <sup>95</sup>    |  |

AE: adverse event

### <u>Utilities</u>

A systematic literature review was undertaken to investigate data on the health-related quality of life for patients with SCD. Much of the literature was collected on patients from the United Kingdom. Where possible values from the US were prioritized for use in the model; however, US and UK values were generally similar.

Utilities were applied to the proportion of the cohort in each health state in the model. For example, an otherwise healthy patient who experienced ACS would have a utility of 0.581 for the 2-week cycle that they experienced ACS. In the base-case for patients experiencing multiple conditions, it was assumed that utilities were multiplicative. For example, a patient with opioid tolerance or dependence would have a utility of 0.64, but during an ACS the utility would be 0.64 X

0.581 = 0.37. Alternatively, an additive assumption can be made; using the reported disutilities, this would result in the same patient having a utility of 0.64 - 0.129 = 0.51. The additive assumption was tested in a sensitivity analysis.

Anie et al. 2012 reported utilities for acute pain crisis at admission to hospital, discharge and 1 week after discharge. We assumed that patients experiencing an acute pain crisis would have the admission utility for 1 week and the discharge utility for 1 week.

**Table 5.16. Utility Estimates for Health States** 

| Health State                                                                                           | Model<br>Utility | Model<br>Disutility | Source<br>Value | Source                            |  |
|--------------------------------------------------------------------------------------------------------|------------------|---------------------|-----------------|-----------------------------------|--|
| Uncomplicated SCD                                                                                      | 0.71             |                     | 0.71            | NICE CG 143 <sup>96</sup>         |  |
| Acute pain crisis (admission)                                                                          | 0.35             | 0.36                | 0.39            | Anie et al. 2012 <sup>97</sup>    |  |
| Acute pain crisis (discharge)                                                                          | 0.61             | 0.1                 | 0.65            |                                   |  |
| Acute pain crisis (1 week follow-up)                                                                   |                  |                     | 0.75            |                                   |  |
| Two-week crisis assuming 7 days of severe pain (admission) and 7 days of less severe pain (discharge)* | 0.48             | 0.23                |                 | Calculated                        |  |
| Acute chest syndrome                                                                                   | 0.581            | 0.129               | 0.56            | NICE CG 143 <sup>96</sup>         |  |
| Myocardial infarction                                                                                  | 0.581            | 0.129               | 0.129           | Clarke et al. 2002 98             |  |
| AKI/Renal infarction                                                                                   | 0.581            | 0.129               |                 | Assumption                        |  |
| Stroke (major)                                                                                         | 0.145            | 0.565               | 0.565           | NICE CG 143 <sup>96</sup>         |  |
| Stroke (minor)                                                                                         | 0.548            | 0.162               | 0.162           |                                   |  |
| Post-stroke based on the proportion of major stroke (0.35)                                             | 0.407            | 0.303               |                 | Calculated                        |  |
| Opioid tolerance/dependence                                                                            | 0.64             | 0.07                | 0.07            | Krebs et al. 2018 99              |  |
| Pulmonary hypertension                                                                                 | 0.59             | 0.12                |                 | Assumption                        |  |
| Heart failure                                                                                          | 0.589            | 0.121               | 0.121           | Clarke et al. 2002 98             |  |
| Nephropathy, CKD                                                                                       | 0.575            | 0.135               | 0.135           | Villeneuve et al. 2016            |  |
| Neurocognitive impairment                                                                              | 0.68             | 0.03                | 0.03            | Stites et al. 2018 <sup>101</sup> |  |
| Fatigue                                                                                                | 0.59             | 0.12                | 0.12            | Naess et al. 2012 <sup>102</sup>  |  |

AKI: acute kidney injury, CKD: chronic kidney disease, SCD: sickle cell disease

## **Economic Inputs**

### **Drug Acquisition Costs**

We obtained the list prices for crizanlizumab and L-glutamine. 103 The reported list price of voxelotor (Oxbryta) is \$10,417 per month, based on online reports. 104

We applied estimated branded drug discount rates to obtain net pricing estimates. Because crizanlizumab and voxelotor were recently approved, there are no data on net price available yet.

<sup>\*</sup>The model allows for the length of severe pain to be adjusted, currently it is assumed to be 7 days.

Because net prices are not yet known, we used the average branded drug discount in the US of 27% as an estimate of these drug's net prices. 105 Net price data for L-glutamine were not available in the SSR net price database, <sup>106</sup> so we used the FSS price as the net price for this drug. <sup>107</sup> As part of optimal usual care, we used the average of generic prices for hydroxyurea.

**Table 5.17. Drug Costs** 

| Drug                        | WAC per Package/Vial | Discount From<br>WAC | Net Price Per<br>Package/Vial | Net Price<br>per Year§ |
|-----------------------------|----------------------|----------------------|-------------------------------|------------------------|
| Crizanlizumab<br>(Adakveo®) | \$2,357/vial         | 27%                  | \$1,721                       | \$120,470              |
| Voxelotor<br>(Oxbryta®)     | \$10,417             | 27%                  | \$7,604                       | \$99,197               |
| L-glutamine<br>(Endari®)*   | \$1,110/package      | 26%                  | \$823.88†                     | \$30,092               |
| Hydroxyurea‡                | \$88.05/100 capsules |                      |                               | \$322 -<br>\$2,251     |

NA: not available, WAC: wholesale acquisition cost

§1 year = 365.25 days or 52 weeks

#### Non-Drug Costs

As described above, actual costs of both acute (Table 5.18) and chronic (Table 5.19) events were obtained through de novo evidence generation from a series of analyses using the Aetion Evidence Platform on a Marketscan claims dataset using the most recent data available, from Dec 31, 2002 to Dec 31, 2017. The Truven MarketScan databases capture longitudinal, individual-level administrative claims data from the United States. The data available for this study included the Commercial Claims and Encounters (CCAE) Database and Medicare Supplemental and Coordination of Benefits Database. (See Appendix F for full study protocol).

<sup>\*</sup>Price per package of 60 5g packets

<sup>†</sup>Federal Supply Schedule (FSS) price as of November 2019

<sup>‡</sup>Average of generic prices for 100 500mg oral capsules

**Table 5.18. Cost per SCD Complication** 

| Incremental Cost in the Year of<br>Event/Diagnosis (per Event) | Estimate    | SD        | Source                           |
|----------------------------------------------------------------|-------------|-----------|----------------------------------|
|                                                                | Acute Pai   | n Crisis  |                                  |
| Age < 18                                                       | \$12,980    | \$33,604  | MarketScan <sup>68</sup>         |
| Age ≥ 18                                                       | \$13,735    | \$24,576  | MarketScan <sup>68</sup>         |
|                                                                | Acute Chest | Syndrome  |                                  |
| Age < 18                                                       | \$22,701    | \$24,332  | MarketScan <sup>68</sup>         |
| Age ≥ 18                                                       | \$29,896    | \$49,104  | MarketScan <sup>68</sup>         |
| Myocardial infarction                                          | \$53,458    | \$81,781  | MarketScan <sup>68</sup>         |
| Acute kidney injury/Renal infarction                           | \$8,205     | NR        | Yeruva et al. 2016 <sup>73</sup> |
|                                                                | Strol       | ke        |                                  |
| Age < 18                                                       | \$129,956   | \$243,770 | MarketScan <sup>68</sup>         |
| Age ≥ 18                                                       | \$57,780    | \$94,745  | MarketScan <sup>68</sup>         |

NR: not reported

**Table 5.19. Annual Cost of Chronic Complications** 

|                             | Estimate | (95% CI)         | Source                   |
|-----------------------------|----------|------------------|--------------------------|
| Pulmonary hypertension      | \$19,343 | (10,697, 27,989) | MarketScan <sup>68</sup> |
| Heart failure               | \$32,505 | (21,405, 43,605) | MarketScan <sup>68</sup> |
| Nephropathy, CKD            | \$20,708 | (13,947, 27,468) | MarketScan <sup>68</sup> |
| Neurocognitive impairment   | \$11,687 | (1,430, 21,944)  | MarketScan <sup>68</sup> |
| Fatigue                     | \$4,398  | (588, 8,208)     | MarketScan <sup>68</sup> |
| Post-stroke                 | \$9,807  | NR               | MarketScan <sup>68</sup> |
| Opioid tolerance/dependence | \$17,345 | (-1,151, 35,841) | MarketScan <sup>68</sup> |

CI: confidence interval, CKD: chronic kidney disease, NR: not reported

According to the MarketScan data, 11% to 29% of patients are on chronic transfusion and up to 5 in 10,000 experience iron overload, depending on their age. Age-specific proportions were used to calculate chronic transfusion costs using the annual cost of chronic transfusion from Blinder et al. 2013 and iron overload costs using costs calculated from the MarketScan data (Table 5.20).

Table 5.20. Other Health Care Cost Parameters

|                             | Estimate | Lower (-20%) | Upper (+20%) | Source                             |
|-----------------------------|----------|--------------|--------------|------------------------------------|
| Physician Visit             | \$175    | \$140        | \$210        | Level 5 Physician Visit            |
| Transfusion Cost (per year) | \$36,305 | \$29,044     | \$43,566     | Blinder et al. 2013 <sup>108</sup> |
| Iron Overload (per event)   | \$9,137  | \$7,309      | \$10,964     | MarketScan Data <sup>68</sup>      |

## **Model Analysis**

The model estimated the average survival, quality-adjusted survival, drug cost, complication cost, and number of acute complications per patient. Time spent in each health state was summed to provide estimates of life expectancy and quality-adjusted life expectancy. Long-term estimates of costs, QALYs, evLYG, and LYs were discounted at 3% per year. A more detailed description of the evLYG calculations can be found in Appendix E. We calculated the incremental results for each intervention versus optimal usual care alone as the incremental cost per LY, evLYG, and QALY, and also the incremental cost per pain crisis avoided and per 1 g/dL increase in hemoglobin.

## **Sensitivity Analyses**

We conducted one-way sensitivity analyses to identify the impact of parameter uncertainty and key drivers of model outcomes. Probabilistic sensitivity analyses will also be performed by jointly varying all model parameters over the minimum numbers of simulations necessary to achieve

statistical convergence, then calculating 95% credible range estimates for each model outcome based on the results.

## **Scenario Analyses**

A modified societal perspective will be applied to the base case, using components such as out-of-pocket costs, productivity losses, caregiver HRQoL, and school attendance. This analysis will be completed using data from a survey being conducted by ICER and Sick Cells, scheduled to be complete by February 12<sup>th</sup>, 2020.

Two scenario analyses have been provided to demonstrate the cost-effectiveness of treatments in different populations. The first population had a higher pain crisis rate, with a baseline of 10 acute pain crises per year. The second population reflects a younger cohort, using the starting age of 16 years, the minimum age for which crizanlizumab is indicated. We also performed threshold analyses to determine drug prices that would achieve a range of incremental cost-effectiveness ratios (from \$50,000 to \$150,000 per QALY).

## **Model Validation**

We used several approaches to validate the model. First, we shared preliminary methods, inputs, and model assumptions with manufacturers, patient groups, and clinical experts. Based on feedback from these different groups on our methodology and calculations, we refined our approach and data inputs used in the model, as relevant. Second, we varied model input parameters to evaluate face validity of changes in results. Third, we performed model verification for model calculations using internal reviewers. Fourth, we compared results to other cost-effectiveness models in this therapy area. Finally, following publication of this draft report, we will share the model with the manufacturers for a review period of three weeks. Feedback from review of the model and draft report will be considered when revising the draft report.

## 5.3 Results

## **Base-Case Results**

All base-case results shown here are discounted at 3% for both costs and outcomes. (Undiscounted results for each drug are shown in Appendix Tables E3-E5.) The base-case results show the life-time costs for a patient on optimal usual care from age 24 are approximately \$1.1 million. The model estimates that optimal usual care patients with a baseline risk of 3 acute pain crises per year are expected to experience 46 acute pain crises over their lifetime. Not all patients will have a myocardial or AKI/renal infarction or stroke; the model estimates a rate of 15 per 100 myocardial infarctions, 2 per 100 AKI/renal infarctions, and 61 per 100 with stroke. Patients with SCD on optimal usual care are predicted to live to 45 years old, which when discounted at 3% per year equates to approximately 15 additional life-years, 8 additional evLYG, and 8 additional QALYs. Each treatment below is compared to the same optimal usual care.

Treatment costs for crizanlizumab are approximately \$1.2 million over the lifetime, with cost-savings of approximately \$115,000 from avoided acute and chronic conditions (Table 5.21). Cost off-sets are due to avoiding costs of acute and chronic conditions, which are lower for patients on crizanlizumab than with optimal usual care alone. However, these cost off-sets are attenuated by the additional costs of longer life with costly chronic conditions. The model estimates that crizanlizumab patients will experience 29 acute pain crises over their lifetime and have fewer episodes of ACS, myocardial infarction, AKI/renal infarction and stroke (Table 5.21). Patients on crizanlizumab are expected to live to 50 years old, with approximately 2.3 life-years gained, 2.0 evLYG, and 0.85 QALYs gained compared to optimal usual care. Incremental cost-effectiveness of crizanlizumab compared to optimal usual care is estimated to be \$444,000 per life year (LY) gained, \$520,000 per evLYG and \$1.2 million per QALY gained.

Table 5.21. Results for the Base Case for Crizanlizumab versus Optimal Usual Care Alone

| Treatment         | Optimal Usual<br>Care | Crizanlizumab | Difference  | ICER        |                               |  |
|-------------------|-----------------------|---------------|-------------|-------------|-------------------------------|--|
| Treatment Cost    | -                     | \$1,150,000   | \$1,150,000 | -           |                               |  |
| Other Cost        | \$1,145,000           | \$1,030,000   | -\$115,000  | -           |                               |  |
| Total Cost        | \$1,145,000           | \$2,180,000   | \$1,035,000 | -           |                               |  |
| Acute Pain Crises | 45.56                 | 28.75         | -16.81      | \$62,000    | per acute pain crisis avoided |  |
| Hemoglobin (g/dL) | 0.00                  | 0.00          | 0.00        |             | Dominated                     |  |
| Life-years        | 15.19                 | 17.52         | 2.33        | \$444,000   | per LY gained                 |  |
| evLYG             | 7.64                  | 9.64          | 1.99        | \$520,000   | per evLYG gained              |  |
| QALYs             | 7.64                  | 8.50          | 0.85        | \$1,212,000 | per QALY gained               |  |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

Treatment costs for voxelotor are approximately \$1.3 million over the lifetime (Table 5.22). The model estimates that voxelotor patients will experience 44 acute pain crises over their lifetime (Table 5.22), and have fewer episodes of ACS, myocardial infarction, AKI/renal infarction and stroke. Patients on voxelotor also experience an average increase in hemoglobin levels of 1.2 g/dL. Given the assumption that rises in hemoglobin with voxelotor produce benefits analogous to higher hemoglobin levels in other settings, this results in patients on voxelotor having the fewest stroke events over their lifetime, 38 per 100 patients. Patients on voxelotor are expected to live to 50 years old, with approximately 2.1 life-years gained, 1.9 evLYG, and 0.96 QALYs gained compared to optimal usual care. Incremental cost-effectiveness of voxelotor compared to usual care is estimated at approximately \$600,000 per LY gained, \$650,000 per evLYG, and \$1.3 million per QALY gained. Note that these results rely on the inclusion of several assumptions that tended to favor the treatment. Despite the lack of information of treatment effect on other outcomes of interest, we assumed that acute events and chronic conditions would be impacted by the (non-significant) reduction in number of acute pain crises, and that there was an effect of changes in hemoglobin on risk for acute and chronic conditions including stroke, fatigue, chronic kidney disease, and pulmonary hypertension.

Table 5.22. Results for the Base Case for Voxelotor versus Optimal Usual Care Alone

| Treatment             | Usual Care  | Voxelotor   | Difference  | ICER                    |                               |  |
|-----------------------|-------------|-------------|-------------|-------------------------|-------------------------------|--|
| <b>Treatment Cost</b> | -           | \$1,260,000 | \$1,260,000 | -                       |                               |  |
| Other Cost            | \$1,209,000 | \$1,214,000 | \$4,000     | -                       |                               |  |
| <b>Total Cost</b>     | \$1,209,000 | \$2,474,000 | \$1,264,000 | -                       |                               |  |
| Acute Pain Crises     | 45.56       | 43.86       | -1.70       | \$742,000               | per acute pain crisis avoided |  |
| Hemoglobin (g/dL)     | -0.10       | 1.10        | 1.20        | \$61,000                | per g/dL per year             |  |
| LYs                   | 15.19       | 17.30       | 2.11        | \$600,000 per LY gained |                               |  |
| evLYG                 | 7.64        | 9.59        | 1.94        | \$651,000               | per evLY gained               |  |
| QALYs                 | 7.64        | 8.60        | 0.96        | \$1,321,000             | per QALY gained               |  |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

Treatment costs for L-glutamine are approximately \$302,000 over the lifetime, with cost-savings of approximately \$23,000 from avoided acute and chronic conditions (Table 5.23). The model estimates that L-glutamine patients will experience 42 acute pain crises over their lifetime and have fewer episodes of stroke (Table 5.23). Patients on L-glutamine are expected to live to 46 years old,

<sup>\*</sup> It is assumed that patients on voxelotor maintain the 1.2 g/dL hemoglobin improvement throughout their life. This number is the total incremental cost divided by the improvement in hemoglobin divided by life-expectancy or the number of years it is assumed the improvement will be maintained. This represents the cost of improving an individual's hemoglobin by 1g/dL each year.

with approximately 0.29 life-years gained, 0.33 evLYG, and 0.10 QALYs gained compared to optimal usual care. Incremental cost-effectiveness of L-glutamine compared to usual care is estimated to be approximately \$965,000 per LY gained, \$847, 000 per evLYG, and \$2.7 million per QALY gained.

Table 5.23. Results for the Base Case for L-glutamine versus Optimal Usual Care Alone

| Treatment             | Usual Care  | L-<br>glutamine | Difference | ICER                    |                               |  |
|-----------------------|-------------|-----------------|------------|-------------------------|-------------------------------|--|
| <b>Treatment Cost</b> | -           | \$302,000       | \$302,000  | -                       |                               |  |
| Other Cost            | \$1,145,000 | \$1,121,000     | -\$23,000  | -                       |                               |  |
| <b>Total Cost</b>     | \$1,145,000 | \$1,423,000     | \$278,000  | -                       |                               |  |
| Acute Pain Crises     | 45.56       | 42.25           | -3.31      | \$84,000                | per acute pain crisis avoided |  |
| Hemoglobin (g/dL)     | 0.00        | 0.00            | 0.00       | Doi                     | minated                       |  |
| LYs                   | 15.19       | 15.48           | 0.29       | \$965,000 per LY gained |                               |  |
| evLYG                 | 7.64        | 7.97            | 0.33       | \$847,000               | per evLY gained               |  |
| QALYs                 | 7.64        | 7.75            | 0.10       | \$2,717,000             | per QALY gained               |  |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

Table 5.24 reports the life-time discounted acute events. In all cases patients with optimal usual care alone are more likely to experience an acute event. Patients on crizanlizumab experience the fewest acute pain crises, ACS, MI and renal infarction events. This is because of the large treatment effect of crizanlizumab on acute pain crises and the relative effect of acute pain crises on each of the other acute events in the model. Patients on voxelotor experience the fewest stroke events because of the relative effect of improvements in hemoglobin on strokes, with smaller impacts on other events.

**Table 5.24. Comparison of Acute Events** 

| Treatment         | Optimal<br>Usual Care | Crizanlizumab | Voxelotor | L-glutamine |
|-------------------|-----------------------|---------------|-----------|-------------|
| Acute Pain Crisis | 45.56                 | 28.75         | 43.86     | 42.25       |
| ACS               | 0.99                  | 0.75          | 0.93      | 0.99        |
| MI                | 0.151                 | 0.124         | 0.147     | 0.151       |
| RI                | 0.022                 | 0.020         | 0.021     | 0.022       |
| Stroke            | 0.61                  | 0.51          | 0.38      | 0.61        |

ACS: acute chest syndrome, MI: myocardial infarction, RI: renal infarction

Table 5.25 reports the prevalence of chronic diseases accounted for in the model at different ages. These results suggest crizanlizumab improves pulmonary hypertension after age 24 and heart

failure and CKD until after 50 years of age. Voxelotor improves pulmonary hypertension, chronic kidney disease, and heart failure until after 50 years of age. L-glutamine has no effect on pulmonary hypertension, and minimal effects on heart failure and CKD. The model assumes no direct treatment effects on chronic conditions. However, the model does assume that acute pain crises have a small effect on each of the chronic conditions. Therefore, treatments that reduce acute pain crises reduce chronic conditions, and treatments that reduce acute pain crises more have a larger impact on chronic conditions. The model also accounts for improvements in hemoglobin, as discussed above. In some cases, prevalence in the treated population is higher than the prevalence in the usual care group. This is due to longer life expectancy in the treatment arms.

Table 5.25. Comparison of Chronic Disease Prevalence at Different Ages in the Model

|      |                    |               | Model     |             |  |  |  |
|------|--------------------|---------------|-----------|-------------|--|--|--|
|      | Optimal Usual Care | Crizanlizumab | Voxelotor | L-glutamine |  |  |  |
| Age  |                    | р             | HTN (%)   |             |  |  |  |
| 24   | 34%                | 34%           | 34%       | 34%         |  |  |  |
| 38   | 56%                | 52%           | 51%       | 56%         |  |  |  |
| 50   | 77%                | 73%           | 72%       | 77%         |  |  |  |
| 59.5 | 89%                | 86%           | 85%       | 89%         |  |  |  |
| 70   | 97%                | 95%           | 95%       | 97%         |  |  |  |
|      | HF (%)             |               |           |             |  |  |  |
| 24   | 13%                | 13%           | 13%       | 13%         |  |  |  |
| 38   | 32%                | 29%           | 28%       | 32%         |  |  |  |
| 50   | 50%                | 46%           | 46%       | 50%         |  |  |  |
| 59.5 | 49%                | 51%           | 50%       | 49%         |  |  |  |
| 70   | 51%                | 54%           | 54%       | 52%         |  |  |  |
|      |                    |               | CKD (%)   |             |  |  |  |
| 24   | 21%                | 21%           | 21%       | 21%         |  |  |  |
| 38   | 41%                | 37%           | 32%       | 40%         |  |  |  |
| 50   | 57%                | 53%           | 45%       | 57%         |  |  |  |
| 59.5 | 60%                | 60%           | 46%       | 60%         |  |  |  |
| 70   | 66%                | 66%           | 51%       | 66%         |  |  |  |

CKD: chronic kidney disease, HF: heart failure, pHTN: pulmonary hypertension

## **Sensitivity Analysis Results**

Sensitivity analysis demonstrates that increasing the baseline risk of acute and chronic conditions (including the rate of acute pain to 6 per year) and baseline death rates results in lower incremental cost-effectiveness ratios (Table 5.26-5.28). Increasing the baseline utility for patients with uncomplicated SCD decreased the incremental cost-effectiveness ratio, however, an increase of 20% did not result in any treatment being less than \$1 million per additional QALY. Changes to the

health state costs of plus or minus 20% had very small effects on the incremental cost-effectiveness ratios, less than \$2,000 difference in the cost per QALY. The lowest cost per QALY for the crizanlizumab and L-glutamine comparisons occurred when the baseline risk of acute and chronic conditions was doubled. The comparison with voxelotor had the lowest cost per QALY when the baseline utility for uncomplicated SCD was increased by 20%.

Table 5.26. Sensitivity Analysis of Crizanlizumab Compared to Usual Care

| Analysis              | Treatments    |       | Outcomes |       | C           | Costs       |           | ental Cost-Effectiv | eness Ratios |
|-----------------------|---------------|-------|----------|-------|-------------|-------------|-----------|---------------------|--------------|
| Alidiysis             | Treatments    | LYG   | evLYG    | QALYs | Treatment   | Total       | \$/LYG    | \$/evLYG            | \$/QALY      |
| Base case             | Usual Care    | 15.19 | 7.64     | 7.64  | -           | \$1,144,760 | -         | -                   | -            |
|                       | Crizanlizumab | 17.52 | 9.64     | 8.50  | \$1,150,054 | \$2,180,243 | \$444,226 | \$520,294           | \$1,212,097  |
| Double baseline risks | Usual Care    | 11.13 | 5.32     | 5.32  | -           | \$1,365,672 | -         | -                   | -            |
|                       | Crizanlizumab | 13.41 | 7.28     | 6.14  | \$886,009   | \$2,084,024 | \$315,237 | \$365,890           | \$875,716    |
| Half baseline risks   | Usual Care    | 19.32 | 10.09    | 10.09 | -           | \$983,045   | -         | -                   | -            |
|                       | Crizanlizumab | 21.44 | 11.91    | 10.89 | \$1,402,592 | \$2,309,791 | \$624,169 | \$726,873           | \$1,642,256  |
| Double baseline       | Usual Care    | 14.08 | 7.24     | 7.24  | -           | \$1,017,672 | -         | -                   | -            |
| death risk            | Crizanlizumab | 16.30 | 9.09     | 8.06  | \$1,071,414 | \$1,981,530 | \$435,710 | \$519,712           | \$1,169,691  |
| Half baseline         | Usual Care    | 16.59 | 8.12     | 8.12  | -           | \$1,312,989 | -         | -                   | -            |
| death risk            | Crizanlizumab | 19.03 | 10.27    | 9.01  | \$1,247,329 | \$2,434,265 | \$459,163 | \$522,259           | \$1,270,306  |
| Baseline HRQoL        | Usual Care    | 15.19 | 9.17     | 9.17  | -           | \$1,144,760 | -         | -                   | -            |
| +20%                  | Crizanlizumab | 17.52 | 11.16    | 10.20 | \$1,150,054 | \$2,180,243 | \$444,226 | \$519,736           | \$1,009,556  |
| Baseline HRQoL -20%   | Usual Care    | 15.19 | 6.12     | 6.12  | -           | \$1,144,760 | -         | -                   | -            |
|                       | Crizanlizumab | 17.52 | 8.11     | 6.80  | \$1,150,054 | \$2,180,243 | \$444,226 | \$520,781           | \$1,515,910  |
| Health State Costs    | Usual Care    | 15.19 | 7.64     | 7.64  | -           | \$1,151,162 | -         | -                   | -            |
| +20%                  | Crizanlizumab | 17.52 | 9.64     | 8.50  | \$1,150,054 | \$2,187,275 | \$444,496 | \$520,611           | \$1,212,836  |
| Health State Costs -  | Usual Care    | 15.19 | 7.64     | 7.64  | -           | \$1,138,358 | -         | -                   | -            |
| 20%                   | Crizanlizumab | 17.52 | 9.64     | 8.50  | \$1,150,054 | \$2,173,210 | \$443,955 | \$519,977           | \$1,211,359  |

evLYG: equal value life years gained, HRQoL: health-related quality of life, LYG: life years gained, QALY: quality-adjusted life year

Table 5.27. Sensitivity Analysis of Voxelotor Compared to Usual Care

| Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Treatments |       | Outcomes |       | Co          | sts         | Increment | al Cost-Effectiv | eness Ratios |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|----------|-------|-------------|-------------|-----------|------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | LYG   | evLYG    | QALYs | Treatment   | Total       | \$/LYG    | \$/evLYG         | \$/QALY      |
| Base case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Usual Care | 15.19 | 7.64     | 7.64  | -           | \$1,209,430 | -         | -                | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Voxelotor  | 17.30 | 9.59     | 8.60  | \$1,260,291 | \$2,473,793 | \$599,508 | \$650,585        | \$1,321,248  |
| Double baseline risks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Usual Care | 11.13 | 5.32     | 5.32  | -           | \$1,419,163 |           |                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Voxelotor  | 13.12 | 7.14     | 6.19  | \$958,704   | \$2,394,965 | \$492,017 | \$537,090        | \$1,127,033  |
| Half baseline risks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Usual Care | 19.32 | 10.09    | 10.09 | -           | \$1,055,655 | -         | -                | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Voxelotor  | 21.31 | 11.95    | 11.02 | \$1,550,084 | \$2,601,140 | \$775,607 | \$831,101        | \$1,650,922  |
| Double baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Usual Care | 14.08 | 7.24     | 7.24  | -           | \$1,073,898 | -         | -                | -            |
| death risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voxelotor  | 16.12 | 9.07     | 8.15  | \$1,175,477 | \$2,258,149 | \$581,187 | \$647,001        | \$1,294,053  |
| Half baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usual Care | 16.59 | 8.12     | 8.12  | -           | \$1,389,972 | -         | -                | -            |
| death risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voxelotor  | 18.69 | 10.14    | 9.10  | \$1,361,084 | \$2,742,868 | \$642,955 | \$671,051        | \$1,388,543  |
| Baseline HRQoL +20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Usual Care | 15.19 | 9.17     | 9.17  | -           | \$1,209,430 | -         | -                | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Voxelotor  | 17.30 | 11.14    | 10.32 | \$1,260,291 | \$2,473,793 | \$599,508 | \$640,639        | \$1,100,937  |
| Baseline HRQoL -20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Usual Care | 15.19 | 6.12     | 6.12  | -           | \$1,209,430 | -         | -                | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Voxelotor  | 17.30 | 8.03     | 6.88  | \$1,260,291 | \$2,473,793 | \$599,508 | \$660,795        | \$1,651,715  |
| Health State Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Usual Care | 15.19 | 7.64     | 7.64  | -           | \$1,215,832 | -         | -                | -            |
| +20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voxelotor  | 17.30 | 9.59     | 8.60  | \$1,260,291 | \$2,480,844 | \$599,816 | \$650,919        | \$1,321,927  |
| Health State Costs -20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Usual Care | 15.19 | 7.64     | 7.64  | -           | \$1,203,028 | -         | -                | -            |
| and MC and an all the common of the common o | Voxelotor  | 17.30 | 9.59     | 8.60  | \$1,260,291 | \$2,466,742 | \$599,200 | \$650,251        | \$1,320,570  |

evLYG: equal value life years gained, HRQoL: health-related quality of life, LYG: life years gained, QALY: quality-adjusted life year

Table 5.28. Sensitivity Analysis of L-Glutamine Compared to Usual Care

|                       |             |       | Outcomes |       | Со        | sts         | Incremental Cost-Effectiveness Ratios |             |             |
|-----------------------|-------------|-------|----------|-------|-----------|-------------|---------------------------------------|-------------|-------------|
| Analysis              | Treatments  | LYG   | evLYG    | QALYs | Treatment | Total       | \$/LYG                                | \$/evLYG    | \$/QALY     |
| Dana anna             | Usual Care  | 15.19 | 7.64     | 7.64  | -         | \$1,144,760 | -                                     | -           | -           |
| Base case             | L-glutamine | 15.48 | 7.97     | 7.75  | \$301,804 | \$1,423,237 | \$965,048                             | \$847,412   | \$2,716,536 |
| Double baseline risks | Usual Care  | 11.13 | 5.32     | 5.32  | -         | \$1,365,672 | -                                     | -           | -           |
| Double paseille lisks | L-glutamine | 11.40 | 5.61     | 5.42  | \$223,648 | \$1,555,096 | \$701,522                             | \$654,689   | \$1,960,283 |
| Half baseline risks   | Usual Care  | 19.32 | 10.09    | 10.09 | -         | \$983,045   | -                                     | -           | -           |
| ndii baseiille lisks  | L-glutamine | 19.59 | 10.43    | 10.19 | \$380,855 | \$1,348,905 | \$1,329,760                           | \$1,048,609 | \$3,665,503 |
| Double baseline       | Usual Care  | 14.08 | 7.24     | 7.24  | -         | \$1,017,672 | -                                     | -           | -           |
| death risk            | L-glutamine | 14.35 | 7.54     | 7.34  | \$280,183 | \$1,275,481 | \$968,987                             | \$850,550   | \$2,640,458 |
| Half baseline         | Usual Care  | 16.59 | 8.12     | 8.12  | -         | \$1,312,989 | -                                     | -           | -           |
| death risk            | L-glutamine | 16.90 | 8.49     | 8.23  | \$329,214 | \$1,617,465 | \$966,176                             | \$839,404   | \$2,808,248 |
| Baseline HRQoL +20%   | Usual Care  | 15.19 | 9.17     | 9.17  | -         | \$1,144,760 | -                                     | -           | -           |
| Daseille findut +20/0 | L-glutamine | 15.48 | 9.52     | 9.29  | \$301,804 | \$1,423,237 | \$965,048                             | \$806,578   | \$2,263,558 |
| Baseline HRQoL -20%   | Usual Care  | 15.19 | 6.12     | 6.12  | -         | \$1,144,760 | -                                     | -           | -           |
| Daseille finqui -20/6 | L-glutamine | 15.48 | 6.43     | 6.20  | \$301,804 | \$1,423,237 | \$965,048                             | \$892,577   | \$3,396,004 |
| Health State Costs    | Usual Care  | 15.19 | 7.64     | 7.64  | -         | \$1,151,162 | -                                     | -           | -           |
| +20%                  | L-glutamine | 15.48 | 7.97     | 7.75  | \$301,804 | \$1,429,717 | \$965,318                             | \$847,649   | \$2,717,296 |
| Health State Costs -  | Usual Care  | 15.19 | 7.64     | 7.64  | -         | \$1,138,358 | -                                     | -           | -           |
| 20%                   | L-glutamine | 15.48 | 7.97     | 7.75  | \$301,804 | \$1,416,758 | \$964,778                             | \$847,175   | \$2,715,777 |

evLYG: equal value life years gained, HRQoL: health-related quality of life, LYG: life years gained, QALY: quality-adjusted life year

## **Scenario Analyses Results**

## **Modified Societal Perspective**

We are currently undertaking a survey of patients living with SCD to understand the impact of their disease on their education, their ability to work, the effect on caregivers, and other costs not covered by commercial insurance or the government. These values will be added to the model to estimate a societal perspective. It is expected that a treatment that avoids acute events and chronic conditions will allow students to attend more school, will decrease the number of missed days from work, will have fewer demands on the caregiver, and will have lower out-of-pocket costs. These additional societal benefits not currently included in the health care perspective are important for understanding the full potential impact of treatments and their value.

## Population with Higher Acute Pain Crisis Rate

Analysis of a population with 10 acute pain crises per year results in a larger difference in acute pain crises avoided and lower incremental cost-effectiveness ratios for all treatments, Tables 5.26-5.28.

Lifetime treatment costs for crizanlizumab in this population are slightly lower than in the base-case population due to the higher mortality rate resulting in a shorter length of treatment, approximately \$1.0 million over the lifetime, with cost-savings of approximately \$396,000 from avoided acute and chronic conditions (Table 5.29). The model estimates that crizanlizumab patients will experience 87 acute pain crises over their lifetime, 48 fewer than with optimal usual care. These patients on crizanlizumab are expected to live to 46 years old, compared to 42 years old for these patients on optimal usual care and 50 years old for the base-case population. These patients on crizanlizumab have approximately 2.4 life-years gained, 2.0 evLYG, and 0.97 QALYs gained compared to usual care. The decreased treatment costs and improved outcomes compared to the base-case result in improved incremental cost-effectiveness of crizanlizumab compared to usual care, at approximately \$273,000 per LY gained, \$309,000 per evLYG, and \$664,000 per QALY gained. To reduce the ICER to \$150,000 per QALY, the baseline acute pain crisis rate would have to be 21 per year.

Table 5.29. Results for Crizanlizumab versus Optimal Usual Care Alone in a Population with 10 **Acute Pain Crises per Year** 

| Treatment         | Optimal<br>Usual Care | Crizanlizumab | Difference  |           | ICER                          |  |
|-------------------|-----------------------|---------------|-------------|-----------|-------------------------------|--|
| Treatment Cost    | -                     | \$1,042,000   | \$1,042,000 | -         |                               |  |
| Other Cost        | \$2,254,000           | \$1,858,000   | -\$396,000  | -         |                               |  |
| Total Cost        | \$2,254,000           | \$2,900,000   | \$646,000   | -         |                               |  |
| Acute Pain Crises | 134.69                | 86.61         | -48.08      | \$13,000  | per acute pain crisis avoided |  |
| Hemoglobin (g/dL) | 0.00                  | 0.00          | 0.00        | Dominated |                               |  |
| LYs               | 13.47                 | 15.83         | 2.37        | \$273,000 | per LY gained                 |  |
| evLYG             | 6.53                  | 8.63          | 2.09        | \$309,000 | per evLY gained               |  |
| QALYs             | 6.53                  | 7.50          | 0.97        | \$664,000 | per QALY gained               |  |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

Lifetime treatment costs for voxelotor in this population with 10 acute pain crises are also lower than in the base-case population, at approximately \$1.1 million over the lifetime (Table 5.30). The model estimates that voxelotor patients will experience 132 acute pain crises over their lifetime, 3 fewer than with optimal usual care. These patients on voxelotor are expected to live to 45 years old, compared to 42 years old for these patients on optimal usual care and 47 years old for the base-case population. These patients on voxelotor have approximately 1.7 life-years gained, 1.6 evLYG, and 0.77 QALYs gained compared to optimal usual care. The incremental cost-effectiveness of voxelotor compared to usual care is approximately \$643,000 per LY gained, \$698,000 per evLYG, and \$1.4 million per QALY gained. There was no number of acute pain crises that would reduce the cost per QALY to \$150,000.

Table 5.30. Results for Voxelotor versus Usual Care Alone in a Population with 10 Acute Pain **Crises per Year** 

| Treatment                | Optimal<br>Usual Care | Voxelotor   | Difference  | ICER        |                         |
|--------------------------|-----------------------|-------------|-------------|-------------|-------------------------|
| <b>Treatment Cost</b>    | -                     | \$1,107,000 | \$1,107,000 | -           |                         |
| Other Cost               | \$2,306,000           | \$2,298,000 | -\$8,000    | -           |                         |
| <b>Total Cost</b>        | \$2,306,000           | \$3,405,000 | \$1,099,000 | -           |                         |
| <b>Acute Pain Crises</b> | 134.69                | 131.75      | -2.93       | \$375,000   | per pain crisis avoided |
| Hemoglobin (g/dL)        | -0.10                 | 1.10        | 1.20        | \$60,000    | per g/dL per year       |
| LYs                      | 13.47                 | 15.18       | 1.71        | \$643,000   | per LY gained           |
| evLYG                    | 6.53                  | 8.11        | 1.57        | \$698,000   | per evLY gained         |
| QALYs                    | 6.53                  | 7.30        | 0.77        | \$1,423,000 | per QALY gained         |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

Lifetime treatment costs for L-glutamine in a more frequent pain crisis population are also lower than in the base-case population, approximately \$269,000 over the lifetime, with cost-savings of approximately \$80,000 from avoided acute and chronic conditions (Table 5.31). The model estimates that L-glutamine patients will experience 125 acute pain crises over their lifetime, 10 fewer than usual care. These patients on L-glutamine are expected to live to approximately 42 years old, with only a 0.29 improvement compared to patients on optimal usual care. Severe patients on L-glutamine have approximately 0.29 life-years gained, 0.34 evLYG, and 0.13 QALYs gained compared to optimal usual care. The incremental cost-effectiveness of L-glutamine compared to optimal usual care is estimated as approximately \$657,000 per life year gained, \$564,000 per evLYG, and \$1.5 million per QALY gained. There is no number of acute pain crises that will reduce the cost per QALY to \$150,000.

Table 5.31. Results for L-Glutamine versus Optimal Usual Care Alone in a Population with 10 **Acute Pain Crises per Year** 

| Treatment                | Optimal<br>Usual Care | L-<br>glutamine | Difference | ICER        |                               |
|--------------------------|-----------------------|-----------------|------------|-------------|-------------------------------|
| <b>Treatment Cost</b>    | -                     | \$269,000       | \$269,000  | -           |                               |
| Other Cost               | \$2,254,000           | \$2,174,000     | -\$80,000  | -           |                               |
| <b>Total Cost</b>        | \$2,254,000           | \$2,443,000     | \$189,000  | -           |                               |
| <b>Acute Pain Crises</b> | 134.69                | 125.17          | -9.52      | \$20,000    | per acute pain crisis avoided |
| Hemoglobin (g/dL)        | 0.00                  | 0.00            | 0.00       | Dominated   |                               |
| Lys                      | 13.47                 | 13.76           | 0.29       | \$657,000   | per LY gained                 |
| evLYG                    | 6.53                  | 6.87            | 0.34       | \$564,000   | per evLY gained               |
| QALYs                    | 6.53                  | 6.66            | 0.13       | \$1,511,000 | per QALY gained               |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

## **Younger Population**

Analyses of a younger population, starting treatment at 16 years old, resulted in a slightly higher cost per QALY for crizanlizumab and voxelotor and a lower cost per QALY for L-glutamine (Tables 5.32-5.34). This is likely due to the lower baseline risk of acute events and chronic conditions in the younger population. This results in improvements in acute pain crises having less of an impact on acute events and chronic conditions at these younger ages.

These results suggest that 16-year-old patients who start crizanlizumab would have 34 acute pain crises over their lifetime, which is 22 acute pain crises fewer than patients on optimal usual care. Lifetime cost would be approximately \$1.3 million, with \$174,000 cost-saving from other costs. This results in incremental cost-effectiveness ratios of approximately \$522,000 per life-year gained, \$578,000 per evLYG, and \$1.3 million per QALY gained.

Table 5.32. Results for Crizanlizumab versus Optimal Usual Care Alone with a Starting Age of 16 Years

| Treatment         | Optimal<br>Usual Care | Crizanlizumab | Difference  |             | ICER                          |
|-------------------|-----------------------|---------------|-------------|-------------|-------------------------------|
| Treatment Cost    | -                     | \$1,308,000   | \$1,308,000 | -           |                               |
| Other Cost        | \$1,328,000           | \$1,154,000   | -\$174,000  | -           |                               |
| Total Cost        | \$1,328,000           | \$2,463,000   | \$1,135,000 | -           |                               |
| Acute Pain Crises | 56.18                 | 34.30         | -21.88      | \$52,000    | per acute pain crisis avoided |
| Hemoglobin (g/dL) | 0.00                  | 0.00          | 0.00        | Dominated   |                               |
| Life Years        | 18.73                 | 20.90         | 2.18        | \$522,000   | per LY gained                 |
| evLYG             | 9.85                  | 11.82         | 1.96        | \$578,000   | per evLY gained               |
| QALYs             | 9.85                  | 10.73         | 0.88        | \$1,291,000 | per QALY gained               |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

This analysis suggests that 16-year-old patients who start voxelotor would have 53 acute pain crises over their lifetime, which is 3 acute pain crises fewer than patients on optimal usual care. Lifetime cost would be \$1.5 million, with \$27,000 cost-saving from other costs. This results in incremental cost-effectiveness ratios of \$702,000 per life-year gained, \$723,000 per evLYG, and \$1.4 million per QALY gained.

Table 5.33. Results for Voxelotor versus Optimal Usual Care Alone with a Starting Age of 16 Years

| Treatment                | Optimal<br>Usual Care | Voxelotor   | Difference  | ICER        |                         |
|--------------------------|-----------------------|-------------|-------------|-------------|-------------------------|
| <b>Treatment Cost</b>    | -                     | \$1,516,666 | \$1,516,666 | -           |                         |
| Other Cost               | \$1,392,178           | \$1,364,770 | -\$27,408   | -           |                         |
| <b>Total Cost</b>        | \$1,392,178           | \$2,881,436 | \$1,489,258 | -           |                         |
| <b>Acute Pain Crises</b> | 56.18                 | 52.84       | -3.34       | \$445,937   | per pain crisis avoided |
| Hemoglobin (g/dL)        | -0.10                 | 1.10        | 1.20        | \$59,528    | per g/dL per year       |
| Lys                      | 18.73                 | 20.85       | 2.12        | \$701,912   | per LY gained           |
| evLYG                    | 9.85                  | 11.91       | 2.06        | \$723,240   | per evLY gained         |
| QALYs                    | 9.85                  | 10.91       | 1.05        | \$1,412,560 | per QALY gained         |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

This analysis suggests that 16-year-old patients who start L-glutamine would have 52 acute pain crises over their lifetime, which is 4 acute pain crises fewer than patients on optimal usual care. Lifetime treatment costs would be \$349,000, with \$34,000 cost-saving from other costs. This results in incremental cost-effectiveness ratios estimated to be approximately \$1.2 million per lifeyear gained, \$901,000 per evLYG, and \$3.1 million per QALY gained.

Table 5.34. Results for L-Glutamine versus Optimal Usual Care Alone with a Starting Age of 16 Years

| Treatment         | Optimal<br>Usual Care | L-<br>glutamine | Difference |             | ICER                    |
|-------------------|-----------------------|-----------------|------------|-------------|-------------------------|
| Treatment Cost    | -                     | \$349,000       | \$349,000  | -           |                         |
| Other Cost        | \$1,328,000           | \$1,294,000     | -\$34,000  | -           |                         |
| Total Cost        | \$1,328,000           | \$1,643,000     | \$315,000  | -           |                         |
| Acute Pain Crises | 56.18                 | 51.83           | -4.35      | \$72,000    | per pain crisis avoided |
| Hemoglobin (g/dL) | 0.00                  | 0.00            | 0.00       | Dominated   |                         |
| Life years        | 18.73                 | 18.99           | 0.26       | \$1,194,000 | per LY gained           |
| evLYG             | 9.85                  | 10.20           | 0.35       | \$901,000   | per evLY gained         |
| QALYs             | 9.85                  | 9.96            | 0.10       | \$3,074,000 | per QALY gained         |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental costeffectiveness ratio, LY: life year, QALY: quality-adjusted life year

## Threshold Analyses

The threshold analyses calculate the drug price at which each treatment would be cost-effective at different relevant thresholds (Table 5.35). For crizanlizumab to be cost-effective at \$50,000 per QALY, the price would have to be \$235 per vial or \$16,450 annually, and \$25,410 annually at \$150,000 per QALY. For voxelotor to be cost-effective at \$50,000 per QALY, the price would have to be \$189 per package or \$2,466 annually, and \$5,842 annually at \$150,000 per QALY. L-glutamine would be cost-effective at 50,000 per QALY at \$78 per package or \$2,837 annually, and at \$3,859 annually at \$150,000 per QALY.

Table 5.35. Annual Drug Costs at List and Discount Prices and at Prices at Which Each Treatment is Cost-effective at Specific Thresholds<sup>71</sup>

| Input Prices  |            | Thresholds of Interest |                   |                    |                    |                    |                     |                     |
|---------------|------------|------------------------|-------------------|--------------------|--------------------|--------------------|---------------------|---------------------|
| Treatments    | List Price | Discount<br>Price      | \$50K<br>per QALY | \$100K<br>per QALY | \$150K<br>per QALY | \$50K<br>per evLYG | \$100K<br>per evLYG | \$150K<br>per evLYG |
| Crizanlizumab | \$164,990  | \$120,470              | \$16,450          | \$20,930           | \$25,410           | \$22,400           | \$32,830            | \$43,260            |
| Voxelotor     | \$135,886  | \$99,197               | \$2,466           | \$5,842            | \$9,218            | \$5,951            | \$12,810            | \$19,670            |
| L-glutamine   | \$40,543   | \$30,092               | \$2,837           | \$3,348            | \$3,859            | \$3,964            | \$5,602             | \$7,241             |

evLYG: equal value life years gained, QALY: quality-adjusted life year

### **Model Validation**

Wilson-Frederick et al. examined the demographic and health utilization patterns among Medicare Fee-for-Service beneficiaries with SCD using the CMS SCD indicator. The population included 11,790 SCD patients between the ages of 18 and 75, using claims data from 2012 through 2016. In 2016, patients had an average of 7.4 emergency department visits, 3.9 days of inpatient hospitalization, and 21.1 days of outpatient utilization. Table 5.36 reports the prevalence of pulmonary hypertension, heart failure, and chronic kidney disease as reported by CMS<sup>71</sup> and as estimated in the model using the average age of the CMS range, as reported in the brackets. This comparison suggests that the predicted prevalence in the model is very similar to that of the Medicare population in terms of chronic disease prevalence.

Table 5.36. Comparison of Prevalence Reported in a Medicare Population Compared to **Prevalence Predicted by the Model** 

| Age range from CMS (average age used in the | Medicare Population | Model Usual Care |  |  |  |  |
|---------------------------------------------|---------------------|------------------|--|--|--|--|
| model)                                      | pHTN (%)            |                  |  |  |  |  |
| 18-30 (24)                                  | 35%                 | 34%              |  |  |  |  |
| 31-45 (38)                                  | 59%                 | 56%              |  |  |  |  |
| 46-54 (50)                                  | 75%                 | 77%              |  |  |  |  |
| 55-64 (59.5)                                | 87%                 | 89%              |  |  |  |  |
| 65-75 (70)                                  | 93%                 | 97%              |  |  |  |  |
|                                             | HF (%)              |                  |  |  |  |  |
| 18-30 (24)                                  | 18%                 | 13%              |  |  |  |  |
| 31-45 (38)                                  | 37%                 | 32%              |  |  |  |  |
| 46-54 (50)                                  | 47%                 | 50%              |  |  |  |  |
| 55-64 (59.5)                                | 52%                 | 49%              |  |  |  |  |
| 65-75 (70)                                  | 48%                 | 51%              |  |  |  |  |
|                                             | CKD (%)             |                  |  |  |  |  |
| 18-30 (24)                                  | 26%                 | 21%              |  |  |  |  |
| 31-45 (38)                                  | 42%                 | 41%              |  |  |  |  |
| 46-54 (50)                                  | 55%                 | 57%              |  |  |  |  |
| 55-64 (59.5)                                | 62%                 | 60%              |  |  |  |  |
| 65-75 (70)                                  | 64%                 | 66%              |  |  |  |  |

CKD: chronic kidney disease, CMS: Centers for Medicare and Medicaid services, HF: heart failure, pHTN: pulmonary hypertension

The national median life-expectancy for people with SCD is reported as being between 38 and 42 years old for men and between 42 and 48 years old for women. 79,81 The average patient in the optimal usual care arm of the model is predicted to live 21 an additional 25 years after entering the model in the base-case analysis, giving a life-expectancy of 45 years old.

The average utility for a patient with SCD on usual care was estimated to be 0.52. This is a very low health-related quality of life and reflects the very serious nature of the disease and the severity of the modelled population.

Model validation suggests that the usual care population is similar to the Medicare population in terms of prevalence of chronic conditions, and has a life-expectancy similar to that reported in the literature.

## Limitations

To simplify the model, it was assumed that only one chronic condition and one acute condition could occur each cycle. This creates a situation where chronic conditions and acute conditions become competing events. Therefore, by decreasing one event in the model it allows other events to occur more frequently. To correct for the competing events, the model was calibrated to minimize the difference in the number of acute events and chronic conditions because of the reduction in acute pain crises in the treatment arm. The specific steps we followed to perform this calibration are described in Appendix E.

This method can be validated by investigating how the model predicts acute and chronic conditions compared to known SCD populations, as was done in the validation section above.

The event rates used in the model are from claims data. This has the potential to underestimate event rates, particularly those that do not result in hospitalization. However, claims data is expected to capture the most debilitating and costly events. Event rates were also tested in sensitivity analysis.

Due to the lack of published evidence, a number of assumptions had to be made. These include: the risk effects of acute pain crisis on AKI/renal infarction, the prevalence of opioid tolerance and dependence, the risk factors of myocardial infarction and heart failure on death, and the dis-utility of AKI/renal infarction and pulmonary hypertension in the SCD population.

In addition, a number of assumptions had to be made about how to combine risk factors and disutilities for patients experiencing multiple acute and chronic conditions. These assumptions were described previously and the justifications described.

This model focuses on improvements in health states and the quality-of-life and length-of-life from these improvements. SCD often has a broad and deep impact on patients" psychosocial well-being. Some of these impacts are captured in measures of quality-of-life, such as anxiety and depression, the ability to take care of one's self, and to perform activities of usual care. Further improvements from treatments for SCD may occur in aspects that are not captured within the model; these potential other benefits are discussed in later sections, along with other contextual considerations.

### **Conclusions**

The prevalence rates predicted in the model suggest a cohort similar to Medicare FFS patients with SCD. Reduction in acute pain crises and improvement in hemoglobin both result in fewer acute events and a lower prevalence of chronic conditions. These improvements extend life-expectancy and lead to an improvement in health-related quality of life. The lifetime total cost of a 24-year-old patient on optimal usual care is \$1.1 million. The life-time treatment cost of crizanlizumab and voxelotor is over \$1 million. L-glutamine costs approximately \$304,000 for lifetime treatment.

Crizanlizumab treatment resulted in the fewest acute pain crises, with 29 over the patient's life compared to 46 for patients on optimal usual care, 44 for patients on voxelotor, and 42 for patient on L-glutamine. Voxelotor treatment resulted in the lowest rate of stroke, with a mean of 0.38 over the patient's lifetime compared to 0.61 for patients on optimal usual care or L-glutamine, and 0.51 for patients on crizanlizumab. There was very little difference in the prevalence of chronic conditions with crizanlizumab and L-glutamine, with treatments causing slightly higher prevalence in some age groups due to lower mortality on treatment. However, treatment with voxelotor resulted in lower prevalence of pulmonary hypertension and chronic kidney disease. All treatments resulted in higher life-expectancy than optimal usual care alone, with 2.33 years with crizanlizumab, 1.19 years with voxelotor, and 0.29 years with L-glutamine.

In the base case, cost per QALY estimates range from \$1.2-2.7 million, while cost per life-years gained and cost per evLYG ranged from \$444,000 to \$997,000 and \$520,000 to \$1 million, respectively. None of the scenario analyses resulted in any of the treatments achieving cost-effectiveness thresholds of \$150,000 per QALY.

## **Disparities**

It is important to note that economic models such as this one cannot capture the full psychosocial impact of systemic issues such as racism that may impact underserved populations such as patients with SCD. It is also unclear what impact treatments for these populations will have on those systemic issues, or vice versa. For example, the majority of people with SCD in the US have African American heritage. Life expectancy at birth is 4.442% lower for blacks than for whites in the US (75.3 years vs. 78.8 years). In an exploratory analysis, we estimated that if all people with SCD were treated with crizanlizumab and all were assumed to be African-American, the increase in life years would decrease the overall disparity in life expectancy by a relative 3.6% (i.e., to 4.426% lower rather than 4.442%).

## **5.4 Summary and Comment**

Treatment costs were the main driver of the cost-effectiveness results, with average annual costs of \$88,000 for crizanlizumab, \$84,000 for voxelotor and \$24,000 for L-glutamine, considering many will discontinue each treatment. Combined with relatively small improvements in QALYs gained (0.85 for crizanlizumab, 0.96 for voxelotor, and 0.10 for L-glutamine), all ICERs were estimated to be over \$1 million per QALY. None of the scenario analyses undertaken lowered the estimated cost per QALY to less than \$150,000 per QALY.

Although a reduction in acute pain crises and increase in hemoglobin will provide relief to patients, they will continue to suffer from other acute and chronic conditions that will have a significant impact on their quality of life. The impact of therapies on these other acute and chronic conditions has yet to be demonstrated in clinical trials, although we made assumptions that included impacts of these treatments on several of these conditions. As a result, there is currently a large difference

in the cost per QALY and the cost per life-year and evLYG. For example, cost per evLYG ranged from approximately \$520,000 for crizanlizumab to \$847,000 for L-glutamine.

Scenario analyses suggest treatment is most cost-effective for patients with higher rates of acute pain crises. Patients who experience 10 acute pain crises per year may have a cost per QALY as low as \$615,000 with crizanlizumab.

## 6. Potential Other Benefits and

## **Contextual Considerations**

Our reviews seek to provide information on potential other benefits offered by the intervention to the individual patient, caregivers, the delivery system, other patients, or the public that would not have been considered as part of the evidence on comparative clinical effectiveness or costeffectiveness. We also recognize that there may be broader contextual issues related to the severity of the condition, whether other treatments are available, and ethical, legal, or other societal priorities that should influence the judgment of policymakers in their determination of the relative value of different interventions. Specific potential other benefits and contextual considerations that we evaluate for each intervention are listed in Table 6.1 below, and the subsequent text provides detail about the elements that are applicable to the comparison of crizanlizumab, voxelotor, and L-glutamine to optimal usual care. We sought input from stakeholders, including individual patients, patient advocacy organizations, clinicians, and manufacturers, to inform the contents of this section.

Each ICER review culminates in a public meeting of an independent voting Council of clinicians, patients, and health services researchers. As part of their deliberations, Council members will judge whether a treatment may substantially impact the considerations listed in Table 6.1. The presence of substantial other benefits or contextual considerations may shift a council member's vote on an intervention's long-term value for money to a different category than would be indicated by the clinical evidence and cost-effectiveness analyses alone. For example, a council member may initially consider a therapy with an incremental cost-effectiveness ratio of \$150,000 per QALY to represent low long-term value for money. However, the Council member may vote for a higher value category if they consider the treatment to bring substantial other benefits or contextual considerations. Conversely, disadvantages associated with a treatment may lead a Council member to vote for a lower value category. A Council member may also determine that there are no other benefits or contextual considerations substantial enough to shift their vote. All factors that are considered in the voting process are outlined in ICER's value assessment framework. The content of these deliberations is described in the last chapter of ICER's Final Evidence Report, which is released after the public meeting.

This section, as well as the Council's deliberation, provides stakeholders with information to inform their decisions on a range of issues, including shared decision-making between patients and clinicians, coverage policy development, and pricing negotiations.

# Table 6.1. Potential Other Benefits or Contextual Considerations (Not Specific to Any Disease or Therapy)

### **Potential Other Benefits**

This intervention offers reduced complexity that will significantly improve patient outcomes.

This intervention will reduce important health disparities across racial, ethnic, gender, socio-economic, or regional categories.

This intervention will significantly reduce caregiver or broader family burden.

This intervention offers a novel mechanism of action or approach that will allow successful treatment of many patients for whom other available treatments have failed.

This intervention will have a significant impact on improving return to work and/or overall productivity.

Other important benefits or disadvantages that should have an important role in judgments of the value of this intervention.

### **Potential Other Contextual Considerations**

This intervention is intended for the care of individuals with a condition of particularly high severity in terms of impact on length of life and/or quality of life.

This intervention is intended for the care of individuals with a condition that represents a particularly high lifetime burden of illness.

This intervention is the first to offer any improvement for patients with this condition.

Compared to optimal usual care, there is significant uncertainty about the long-term risk of serious side effects of this intervention.

Compared to optimal usual care, there is significant uncertainty about the magnitude or durability of the long-term benefits of this intervention.

There are additional contextual considerations that should have an important role in judgments of the value of this intervention.

## 6.1 Potential Other Benefits

As noted in the Introduction and section on Patient Perspectives, the way patients with SCD have been treated in the US is a tragedy that has extended over many decades. Patients and their families have experienced neglect, racism, and total disregard. Research into treatment improvements has received less funding than many other conditions that affect fewer patients. The overall "system" of health insurance and care has betrayed the SCD community.

The potential other benefits of effective treatments for SCD therefore are highly relevant. Among those benefits that are routinely considered by ICER, it is clear that treatment may reduce important health disparities that exist across racial and socio-economic groups in the US. Specifically, effective treatment could potentially reduce the gap in life expectancy between black and white Americans and between the poor and rich in the US, although the magnitude of impact is likely to be relatively small given that SCD affects a relatively small population.

It also seems likely that new, effective treatments could reduce caregiver burden Questions will remain about whether the magnitude of the clinical benefits seen in the early trials of the drugs

under review will reach the threshold of having a noticeable effect on caregivers, but if patients have less pain, suffer fewer morbidities, have fewer hospitalizations, and need fewer doctor visits, then their families and caregivers would have more time to focus on their own education, careers, family, friends, and other interests. Improvement in caregivers' quality of life can have a rebound positive effect for the patient, improving further their own mental, emotional, and physical health.

Similarly, effective treatment could increase the chances for employment among patients with SCD and improve the productivity of all patients, whether they are working or performing family and community functions.

Crizanlizumab, voxelotor, and L-glutamine all have different mechanisms of action both from each other and from hydroxyurea. This is a significant step forward in the field of SCD. Patients who have not been able to tolerate hydroxyurea now have other treatment options. Equally important all three products have different mechanisms of action and work on different critical pathways that underlie the different phenotypic expressions of the disease. This now provides novel treatment options that can be tailored to the different phenotypes of the disease; options to provide a more targeted approach that have not been available before. It also provides an opportunity to potentially combine therapies to address multiple pathophysiological pathways as opposed to just one. While there is much to be learned about the potential benefits and harms of combination therapy, there remains significant potential for new understanding and hope for additive health benefit for patients. With these new treatment options, a more targeted approach, and the potential to deploy multiple concurrent therapies, comes the potential for a healthier patient.

Among possible additional "other benefits," these treatments may also bring more interest, enthusiasm, and perhaps support for the development of subsequent and possibly better treatments in the future. By providing a more hopeful outcome for patients these new treatments may improve the attractiveness of SCD care for clinicians, leading to a new influx of talent and resources. The terrible dysfunction and lack of coordination between the pediatric care of SCD patients and adult care may receive new focus and be subject to innovative care delivery changes. Thus, a suite of new treatments for SCD may have the potential to kickstart a long overdue revolution in the care of the total patient and family from diagnosis throughout the lifespan.

## 6.2 Contextual Considerations

As with potential other benefits, the contextual considerations related to SCD are significant. SCD is a condition that has both many acute, severe effects, and a litany of substantial negative effects throughout patients shortened lifespan. Patients experience tremendous physical pain beginning in the first year of life, progress to organ damage in childhood, organ failure in their teens, twenties, and thirties and early death. They find themselves in financial difficulty due to their disease, have difficulty accessing care because there are so few specialists trained to care for them, and when they do access care are often treated like drug addicts wanting nothing more than to get their next

high, left to suffer agonizing pain, even within hospital wards and emergency rooms, without relief. Once at the physician's office they have historically had few treatment options; bone marrow transplant, hydroxyurea, chronic transfusion, all at significant cost, some with significant risk, and/or side effects. Not surprisingly their very complex disease becomes further complicated by the added psychological and emotional toll of having to endure, interact with, and attempt to navigate a broken, dysfunctional, and dispassionate health care system. This is the context in which patients, their families, loved ones, and the few committed health care providers who care for them find themselves in the current landscape of SCD care.

# 7. Value-Based Price Benchmarks

Value-based price benchmarks will be included in the revised Evidence Report that will be released on or about March 12, 2020.

# 8. Potential Budget Impact

Potential budget impact will be calculated after considering revisions to the cost-effectiveness model following public comment. This will be included in the revised Evidence Report that will be released on or about March 12, 2020.

This is the first ICER review of SCD.

## References

- Rouse C. Uncertain Suffering: Racial Health Disparities and Sickle Cell Disease. University of 1. California Press; 2009.
- 2. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of Sickle Cell Disease: Summary of the 2014 Evidence-Based Report by Expert Panel MembersManagement of Sickle Cell DiseaseManagement of Sickle Cell Disease. JAMA. 2014;312(10):1033-1048.
- 3. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3(10):a011783-a011783.
- Telen MJ. Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. 4. Blood. 2016;127(7):810-819.
- 5. Hassell KL. Population Estimates of Sickle Cell Disease in the U.S. American Journal of Preventive Medicine. 2010;38(4, Supplement):S512-S521.
- CDC NCfHS. Compressed mortality file 1999-2006. 2009; Wonder.cdc.gov/cmf-icd10html. 6.
- 7. Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nature Reviews Disease Primers. 2018;4:18010.
- 8. Vichinsky EP, Neumayr LD, Earles AN, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. The New England journal of medicine. 2000;342(25):1855-1865.
- 9. Huo J, Xiao H, Garg M, Shah C, Wilkie DJ, Mainous Iii A. The Economic Burden of Sickle Cell Disease in the United States. Value in Health. 2018;21:S108.
- 10. Elmariah H, Garrett ME, Castro LM, et al. Factors associated with survival in a contemporary adult sickle cell disease cohort. American Journal of Hematology. 2014;89(5):530-535.
- 11. Ataga KI, Gordeuk V, Allen I, Colby J, Gittings K, Agodoa I. Low Hemoglobin Increases Risk for Stroke, Kidney Disease, Elevated Estimated Pulmonary Artery Systolic Pressure, and Premature Death in Sickle Cell Disease: A Systematic Literature Review and Meta-Analysis. Blood. 2018;132(s1).
- 12. Debaun M, Sarnaik SA, Rodeghier M, et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood. 2012;119(16):3684-3690.
- 13. Ameringer S, Elswick RK, Smith W. Fatigue in Adolescents and Young Adults With Sickle Cell Disease: Biological and Behavioral Correlates and Health-Related Quality of Life. Journal of Pediatric Oncology Nursing. 2014;31(1):6-17.
- 14. Nouraie M, Lee JS, Zhang Y, et al. The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica. 2013;98(3):464-472.
- 15. Kato G, Steinberg M, Gladwin M. Intravascular hemolysis and the pathophysiology of sickle cell disease. Journal Of Clinical Investigation. 2017;127(3):750-760.
- 16. Niihara Y, Miller ST, Kanter J, et al. A Phase 3 Trial of I-Glutamine in Sickle Cell Disease. New England Journal of Medicine. 2018;379(3):226-235.
- 17. Ataga KI, Kutlar A, Kanter J, et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. The New England journal of medicine. 2017;376(5):429-439.

- 18. Vichinsky E, Telfer P. 2313 Incidence of Vaso-Occlusive Crisis Does Not Increase with Achieving Higher Hemoglobin Levels on Voxelotor Treatment or after Discontinuation: Analyses of the HOPE Study. ASH Annual Meeting; 2019.
- 19. Field J. Acute Chest Sydrome in Adults with Sickle Cell Disease. 2019; <a href="https://www.uptodate.com/contents/acute-chest-syndrome-in-adults-with-sickle-cell-disease">https://www.uptodate.com/contents/acute-chest-syndrome-in-adults-with-sickle-cell-disease</a>, 2020.
- 20. Banerjee S. Hepatic manifestations of sickle cell disease. 2018.
- 21. Bourgault M, Grimbert P, Verret C, et al. Acute Renal Infarction: A Case Series. *Clinical Journal of the American Society of Nephrology*. 2013;8(3):392-398.
- 22. CDC. Sickle Cell Disease (SCD). 2019; https://www.cdc.gov/ncbddd/sicklecell/facts.html.
- 23. CDC. Opioid Overdose. 2019; https://www.cdc.gov/drugoverdose/opioids/terms.html.
- 24. Liem RI, Lanzkron S, D. Coates T, et al. American Society of Hematology 2019 guidelines for sickle cell disease: cardiopulmonary and kidney disease. *Blood advances*. 2019;3(23):3867-3897.
- 25. Food and Drug Administration C, CBER. *The Voice of The Patient: Sickle Cell Disease.* October 2014 2014.
- 26. Wakefield EO, Pantaleao A, Popp JM, et al. Describing Perceived Racial Bias Among Youth With Sickle Cell Disease. *Journal of pediatric psychology*. 2018;43(7):779-788.
- 27. Lee L, Smith-Whitley K, Banks S, Puckrein G. Reducing Health Care Disparities in Sickle Cell Disease: A Review. *Public Health Rep.* 2019;134(6):599-607.
- 28. Gold J, STAT. Sickle cell patients fight uphill battle for research, treatment -- and compassion. 2017; <a href="https://www.statnews.com/2017/12/26/sickle-cell-research-treatment/">https://www.statnews.com/2017/12/26/sickle-cell-research-treatment/</a>. Accessed January 16, 2020.
- 29. Strouse JJ, Lobner K, Lanzkron S, M, Haywood C, Jr. NIH and National Foundation Expenditures For Sickle Cell Disease and Cystic Fibrosis Are Associated With Pubmed Publications and FDA Approvals. *Blood.* 2013;122(21):1739-1739.
- 30. Labbe E, Herbert D, Haynes J. Physicians' attitude and practices in sickle cell disease pain management. *Journal of palliative care*. 2005;21(4):246-251.
- 31. Freiermuth CE, Haywood C, Jr., Silva S, et al. Attitudes toward patients with sickle cell disease in a multicenter sample of emergency department providers. *Advanced emergency nursing journal*. 2014;36(4):335-347.
- 32. Centers for Medicare & Medicaid Services. Office of Minority Health. Opioid Prescription in Medicare Beneficiaries: Prescription Opioid Policies and Implications for Beneficiaries with Sickle Cell Disease. 2019; <a href="https://www.cms.gov/About-CMS/Agency-Information/OMH/Downloads/Opioid-Prescription-in-Medicare-Beneficiaries-Report.pdf">https://www.cms.gov/About-CMS/Agency-Information/OMH/Downloads/Opioid-Prescription-in-Medicare-Beneficiaries-Report.pdf</a>. Accessed January 2, 2020.
- 33. Mississippi Division of Medicaid. Medicaid to implement new opioid initiative effective Aug. 1. 2019; <a href="https://medicaid.ms.gov/medicaid-to-implement-new-opioid-initiative-effective-aug-1/">https://medicaid.ms.gov/medicaid-to-implement-new-opioid-initiative-effective-aug-1/</a>. Accessed Jan 2, 2020.
- 34. Begley S, STAT. 'Every time it's a battle': In excruciating pain, sickle cell patients are shunted aside. 2017; <a href="https://www.statnews.com/2017/09/18/sickle-cell-pain-treatment/">https://www.statnews.com/2017/09/18/sickle-cell-pain-treatment/</a>. Accessed January 16, 2020.
- 35. Mainous AG, 3rd, Tanner RJ, Harle CA, Baker R, Shokar NK, Hulihan MM. Attitudes toward Management of Sickle Cell Disease and Its Complications: A National Survey of Academic Family Physicians. *Anemia*. 2015;2015:853835.

- 36. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115(17):3447-3452.
- 37. Hamideh D, Alvarez O. Sickle cell disease related mortality in the United States (1999-2009). Pediatr Blood Cancer. 2013;60(9):1482-1486.
- 38. CMS. Centers for Medicare and Medicaid Services (CMS). 2020; https://www.cms.gov/medicare-coverage-database/search/searchresults.aspx?CoverageSelection=Both&ArticleType=All&PolicyType=Final&s=All&KeyWord=e ndari&KeyWordLookUp=Title&KeyWordSearchType=And&bc=gAAAAAAAAAAA&=&.
- 39. Aetna. Endari - Prior Authorization Criteria. 2018.
- EmblemHealth. 2019 Prior Authorization Criteria. 2019. 40.
- 41. UnitedHealthcare. Clinical Pharmacy Program - Prior Authorization/Medical Necessity. 2019.
- Administration FaD. Endari (I-glutamine oral powder) [package insert] Emmaus Medical Inc,. 42. 2017.
- 43. MassHealth. Hematologic Agents: Prior Authorization Requirements - Endari for sickle cell disease. 2020; https://masshealthdruglist.ehs.state.ma.us/MHDL/pubtheradetail.do?id=1367&drugld=650
- 44. CareFirst Blue Choice. Specialty Pharmacy Drug List. 2020.
- 45. Anthem. National Drug List. 2019.
- 46. Blue Cross Blue Shield Massachusetts. Medication Lookup: Endari. 2019; https://home.bluecrossma.com/medication/medication-detailpage/1121016?field plan tier=696.
- Florida Medicaid. Prior Authorization Criteria: Adakveo. 2019. 47.
- 48. Hematology ASo. ASH Clinical Practice Guidelines on Sickle Cell Disease. 2019; https://www.hematology.org/SCDguidelines/.
- 49. National Heart Lung and Blood Institute. Evidence-Based Management of Sickle Cell Disease: Expert Panel Report, 2014. 2014; https://www.nhlbi.nih.gov/health-topics/all-publicationsand-resources/evidence-based-management-sickle-cell-disease-expert-0.
- 50. Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997;126(5):376-380.
- 51. Higgins JP. Cochrane Collaboration Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. 2008.
- 52. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-341.
- 53. Agency for Healthcare Research and Quality. U.S. Preventive Services Task Force Procedure Manual. 2008.
- 54. Ollendorf DA, Pearson SD. An integrated evidence rating to frame comparative effectiveness assessments for decision makers. Med Care. 2010;48(6 Suppl):S145-152.
- 55. Ataga KI. Crizanlizumab Treatment Is Associated with Clinically Significant Reductions in Hospitalization in Patients with Sickle Cell Disease: Results from the Sustain Study. 62nd ASH Annual Meeting; 2019; San Diego California.
- 56. Liles D, Cancado R, Kanter J, et al. Established Prevention of Vaso-Occlusive Crises with Crizanlizumab is Further Improved in Patients who Follow the Standard Treatment Regimen: Post Hoc Analysis of the Phase II Sustain Study. Blood. 2018;132(Supplement 1):1082.
- 57. Food and Drug Administration. Center for Drug Evaluation and Research. Application number 7611280rig1s000. Multi-Discipline Review of Crizanlizumab. 2019;

- https://www.accessdata.fda.gov/drugsatfda docs/nda/2019/761128Orig1s000Multidiscipli neR.pdf. Accessed December 19, 2019.
- 58. Kutlar A, Kanter J, Liles DK, et al. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: A SUSTAIN study analysis. Am J Hematol. 2019;94(1):55-61.
- 59. Vichinsky E, Hoppe CC, Ataga KI, et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. The New England journal of medicine. 2019;381(6):509-519.
- 60. Niihara Y. L-Glutamine Therapy Reduces Hospitalization for Sickle Cell Anemia and Sickle β°-Thalassemia Patients at Six Months – A Phase II Randomized Trial. Clinical Pharmacology & Biopharmaceutics. 2014.
- 61. Food and Drug Administration. Center for Drug Evaluation and Research. Application Number 208587Orig1s000. Clinical Review of L-Glutamine (Endari). 2019; https://www.accessdata.fda.gov/drugsatfda docs/nda/2017/208587Orig1s000MedR.pdf. Accessed December 12, 2019.
- 62. Niihara Y, Stark CW, Razon R, et al. Consistent Benefit of L-Glutamine Observed across Patients with Low, Medium, and High Number of Crises Reported in the Year Prior to Screening -- Analysis from the Phase 3 Study of L-Glutamine in Sickle Cell Anemia. Blood. 2018;132(Supplement 1):1065.
- 63. Liles D, Cancado R, Kanter J, et al. Established Prevention of Vaso-Occlusive Crises with Crizanlizumab Is Further Improved in Patients Who Follow the Standard Treatment Regimen: Post-Hoc Analysis of the Phase II Sustain Study. Blood. 2018;132(s1).
- 64. Food and Drug Administration. Center for Drug Evaluation and Research. Application number 2131370rig1s000. Multidiscipline Review of Voxelotor. 2019; https://www.accessdata.fda.gov/drugsatfda docs/nda/2019/2131370rig1s000Multidiscipli ne.pdf. Accessed December 30, 2019.
- 65. Niihara Y, Macan H, Eckman J, et al. L-Glutamine Therapy Reduces Hospitalization for Sickle Cell Anemia and Sickle β°-Thalassemia Patients at Six Months - A Phase II Randomized Trial. Clin Pharmacol Biopharm. 2014;3(1).
- Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and 66. antioxidants in critically ill patients. The New England journal of medicine. 2013;368(16):1489-1497.
- 67. Wilson-Frederick S, Hulihan M, Blaz J. Prevelance of Sickle Cell Disease Among Medicare Fee-For-Service Beneficiaries, Age 18-75 Years, in 2016. Center for Medicare & Medicade Serivces. 2019;15.
- 68. IBM Watson Health. IBM MarketScan Research Databases for Life Sciences Researchers. 2019; https://www.ibm.com/downloads/cas/OWZWJ0QO. Accessed January 1, 2020.
- Elander J, Lusher J, Bevan D, Telfer P. Pain management and symptoms of substance 69. dependence among patients with sickle cell disease. Social science & medicine (1982). 2003;57(9):1683-1696.
- 70. Schatz J, Brown RT, Pascual JM, Hsu L, DeBaun MR. Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease. Neurology. 2001;56(8):1109-1111.
- 71. Services CfMM. Chronic Conditions. 2019; https://www.cms.gov/Research-Statistics-Dataand-Systems/Statistics-Trends-and-Reports/Chronic-Conditions/CC Main.
- Agarwal MA, Shah M, Patel B, et al. Association between Pulmonary Hypertension and 72. Clinical Outcomes in Hospitalized Patients with Sickle Cell Disease. American journal of respiratory and critical care medicine. 2018;198(4):534-537.

- 73. Yeruva SLH, Paul Y, Oneal P, Nouraie M. Renal Failure in Sickle Cell Disease: Prevalence, Predictors of Disease, Mortality and Effect on Length of Hospital Stay. *Hemoglobin*. 2016;40(5):295-299.
- 74. Kokubo Y, Nakamura S, Okamura T, et al. Relationship between blood pressure category and incidence of stroke and myocardial infarction in an urban Japanese population with and without chronic kidney disease: the Suita Study. *Stroke*. 2009;40(8):2674-2679.
- 75. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Low glomerular filtration rate and risk of stroke: meta-analysis. *Bmj.* 2010;341:c4249.
- 76. Tofovic DS, Al-Kindi SG, Oliveira G, Schilz R, Little J, Ginwalla M. Sickle Cell Disease and Risk of Heart Failure. *Journal of Cardiac Failure*. 2017;23(8):S77.
- 77. Shah N, Bhor M, Arcona S, Halloway R. Evaluation of Vaso-Occlusive Crises in United States Sickle Cell Disease Patients: A Retrospective Claims-Based Study. *Journal of Health Economics and Outcomes Research*. 2019.
- 78. Darbari D, Wang Z, Kwak M, et al. Severe Painful Vaso-Occlusive Crises and Mortality in a Contemporary Adult Sickle Cell Anemia Cohort Study: e79923. *PLoS ONE*. 2013;8(11).
- 79. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. *The New England journal of medicine*. 1994;330(23):1639-1644.
- 80. Maitra P, Caughey M, Robinson L, et al. Risk factors for mortality in adult patients with sickle cell disease: a meta-analysis of studies in North America and Europe. *Haematologica*. 2017;102(4):626-636.
- 81. Lanzkron S, Carroll CP, Haywood C, Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. *Public Health Rep.* 2013;128(2):110-116.
- 82. Gladwin MT, Sachdev V. Cardiovascular abnormalities in sickle cell disease. *J Am Coll Cardiol.* 2012;59(13):1123-1133.
- 83. Bode-Thomas F, Hyacinth HI, Ogunkunle O, Omotoso A. Myocardial ischaemia in sickle cell anaemia: evaluation using a new scoring system. *Annals of tropical paediatrics*. 2011;31(1):67-74.
- 84. van Tuijn CFJ, van Beers EJ, Schnog J-JB, Biemond BJ. Pain rate and social circumstances rather than cumulative organ damage determine the quality of life in adults with sickle cell disease. *American Journal of Hematology*. 2010;85(7):532-535.
- 85. Gosmanova EO, Zaidi S, Wan JY, Adams-Graves PE. Prevalence and Progression of Chronic Kidney Disease in Adult Patients With Sickle Cell Disease. *Journal of Investigative Medicine*. 2014;62(5):804-807.
- 86. Guasch A, Navarrete J, Nass K, Zayas CF. Glomerular Involvement in Adults with Sickle Cell Hemoglobinopathies: Prevalence and Clinical Correlates of Progressive Renal Failure. *Journal of the American Society of Nephrology.* 2006;17(8):2228-2235.
- 87. Drawz P, Ayyappan S, Nouraie M, et al. Kidney Disease among Patients with Sickle Cell Disease, Hemoglobin SS and SC. *Clin J Am Soc Nephrol.* 2016;11(2):207-215.
- 88. Derebail VK, Ciccone EJ, Zhou Q, Kilgore RR, Cai J, Ataga KI. Progressive Decline in Estimated GFR in Patients With Sickle Cell Disease: An Observational Cohort Study. *American Journal of Kidney Diseases*. 2019;74(1):47-55.
- 89. Caughey MC, Poole C, Ataga KI, Hinderliter AL. Estimated pulmonary artery systolic pressure and sickle cell disease: a meta-analysis and systematic review. *British Journal of Haematology*. 2015;170(3):416-424.
- 90. Gladwin MT, Sachdev V, Jison ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. *The New England journal of medicine*. 2004;350(9):886-895.

- 91. Ataga KI, Moore CG, Jones S, et al. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. British Journal of Haematology. 2006;134(1):109-115.
- 92. Zhang Y-X, Wang L, Lu W-Z, et al. Association Between High FSH, Low Progesterone, and Idiopathic Pulmonary Arterial Hypertension in Women of Reproductive Age. American journal of hypertension. 2020;33(1):99-105.
- 93. Caughey MC, Hinderliter AL, Jones SK, Shah SP, Ataga KI. Hemodynamic characteristics and predictors of pulmonary hypertension in patients with sickle cell disease. Am J Cardiol. 2012;109(9):1353-1357.
- 94. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288-294.
- 95. FDA odac. Oral L-Glutamine Powder For The Treatment of Sickle Cell Disease: Sponsor Briefing Document. 2017.
- 96. Excellence NIfHaC. Sickle Cell Disease: Managing Acute Painful Episodes in Hospital. 2012.
- 97. Anie KA, Grocott H, White L, Dzingina M, Rogers G, Cho G. Patient self-assessment of hospital pain, mood and health-related quality of life in adults with sickle cell disease. BMJ Open. 2012;2(4):e001274.
- 98. Clarke P, Gray A, Holman R. Estimating utility values for health states of type 2 diabetic patients using the EQ-5D (UKPDS 62). Medical decision making: an international journal of the Society for Medical Decision Making. 2002;22(4):340-349.
- 99. Krebs E, Enns B, Evans E, et al. Cost-Effectiveness of Publicly Funded Treatment of Opioid Use Disorder in California. Ann Intern Med. 2018;168(1):10-19.
- Villeneuve PM, Clark EG, Sikora L, Sood MM, Bagshaw SM. Health-related quality-of-life 100. among survivors of acute kidney injury in the intensive care unit: a systematic review. Intensive care medicine. 2016;42(2):137-146.
- 101. Stites SD, Harkins K, Rubright JD, Karlawish J. Relationships Between Cognitive Complaints and Quality of Life in Older Adults With Mild Cognitive Impairment, Mild Alzheimer Disease Dementia, and Normal Cognition. Alzheimer disease and associated disorders. 2018;32(4):276-283.
- 102. Naess H, Lunde L, Brogger J. The effects of fatigue, pain, and depression on quality of life in ischemic stroke patients: the Bergen Stroke Study. Vascular health and risk management. 2012;8:407-413.
- 103. Redbook. 2018. Accessed July 11, 2018.
- 104. Gardner J. Global Blood's Sickle Cell Drug Wins FDA Approval, Joining Novartis' Adakveo. BioPharmaDive. 2019.
- 105. IQVIA Institute. Medicine Use and Spending in the U.S.: A Review of 2017 and Outlook to 2022. Parsippany, NJ: IQVIA Institute;2018.
- 106. SSR Health L. Data on File. In:2018.
- Pharmaceutical Prices. U.S. Department of Veterans Affairs; 2018. Accessed July 15, 2018. 107.
- 108. Blinder MA, Vekeman F, Sasane M, Trahey A, Paley C, Duh MS. Age-related treatment patterns in sickle cell disease patients and the associated sickle cell complications and healthcare costs. Pediatr Blood Cancer. 2013;60(5):828-835.
- 109. Arias E, Xu J. United States life tables: 2017. National Center for Health Statistics. 2019;68.
- 110. Cieri-Hutcherson NE, Hutcherson TC, Conway-Habes EE, Burns BN, White NA. Systematic Review of I-glutamine for Prevention of Vaso-occlusive Pain Crisis in Patients with Sickle Cell Disease. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2019;39(11):1095-1104.

- 111. Howard J, vichinsky E. 1020 Correlation of Voxelotor Exposure with Hemoglobin Response and Measures of Hemolysis in Patients from the HOPE Study. ASH Annual Meeting; 2019.
- 112. Ware RE, Brown C. 1003 Concomitant Hydroxyurea and Voxelotor: Results from the HOPE Study. ASH Annual Meeting; 2019.
- Howard J, Hemmaway CJ, Telfer P, et al. A phase 1/2 ascending dose study and open-label 113. extension study of voxelotor in patients with sickle cell disease. Blood. 2019;133(17):1865-1875.
- 114. Niihara Y, Tran L, Razon R, Stark C, Macan H. Decrease in the Severity of Painful Sickle Cell Crises with Oral Pglg. Blood. 2015;126(23).
- 115. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. Jama. 2016;316(10):1093-1103.
- Pickard AS, Law EH, Jiang R, et al. United States Valuation of EQ-5D-5L Health States Using 116. an International Protocol. Value in health: the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2019;22(8):931-941.
- 117. Hassell KL. Population Estimates of Sickle Cell Disease in the U.S. American Journal of Preventive Medicine. 2010;38(4):S512-S521.

## **APPENDICES**

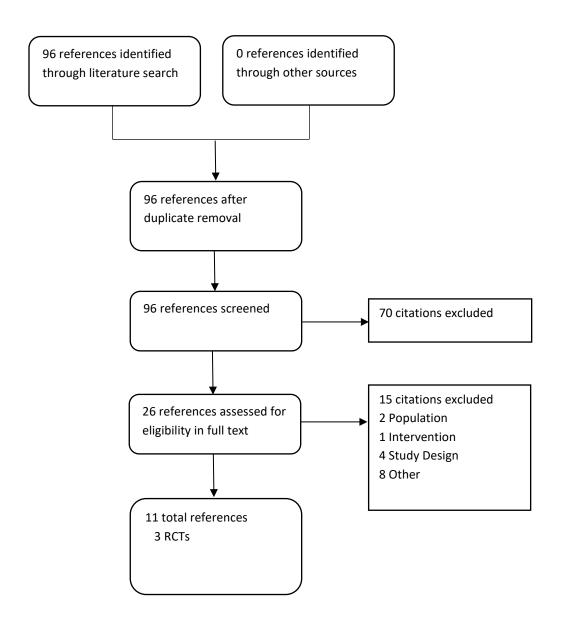
# Appendix A. Search Strategies and Results

## Table A1. PRISMA 2009 Checklist

|                           | #  | Checklist item                                                                                                                                                                                                                                                                                              |
|---------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |    | TITLE                                                                                                                                                                                                                                                                                                       |
| Title                     | 1  | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                         |
|                           |    | ABSTRACT                                                                                                                                                                                                                                                                                                    |
| Structured summary        | 2  | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. |
|                           |    | INTRODUCTION                                                                                                                                                                                                                                                                                                |
| Rationale                 | 3  | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              |
| Objectives                | 4  | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  |
|                           |    | METHODS                                                                                                                                                                                                                                                                                                     |
| Protocol and registration | 5  | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.                                                                                                                               |
| Eligibility criteria      | 6  | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      |
| Information sources       | 7  | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  |
| Search                    | 8  | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               |
| Study selection           | 9  | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   |
| Data collection process   | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                                                                                                                  |
| Data items                | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       |

| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. |
|------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary measures                   | 13 | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          |
| Synthesis of results               | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., $I^2$ ) for each meta-analysis.                                                              |
| Risk of bias across studies        | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                           |
| Additional analyses                | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                       |
|                                    |    | RESULTS                                                                                                                                                                                                                |
| Study selection                    | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                        |
| Study characteristics              | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.                                                                           |
| Risk of bias within studies        | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                              |
| Results of individual studies      | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.               |
| Synthesis of results               | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                                |
| Risk of bias across studies        | 22 | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                                        |
| Additional analysis                | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                                  |
|                                    |    | DISCUSSION                                                                                                                                                                                                             |
| Summary of evidence                | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                   |
| Limitations                        | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                                          |
| Conclusions                        | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                                |
|                                    |    | FUNDING                                                                                                                                                                                                                |
| Funding                            | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                                             |
|                                    |    |                                                                                                                                                                                                                        |

From: Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097


Table A2. Search Strategies for Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) 1946 to Present

| 1  | exp anemia, sickle cell/                                                                                      |
|----|---------------------------------------------------------------------------------------------------------------|
| 2  | ((sickle adj3 (disease or an?emia)) or 'sickle cell' or meniscocyt* or drepanocyte* or sickl* or (SC adj3     |
|    | (disease or an?emia))).ti,ab.                                                                                 |
| 3  | hemoglobin, sickle/ or (h?emoglobin adj5 sickl*).ti,ab.                                                       |
| 4  | ((h?emoglobin or hb or hb- or hgb) adj3 (SS or S-S or SC or S-C or SB* or b0 or S-beta or thalassemia or      |
|    | beta-zero or beta plus)).ti,ab.                                                                               |
| 5  | (glutamine or l-glutamine).ti,ab                                                                              |
| 6  | (endari or xyndari).ti,ab                                                                                     |
| 7  | (crizanlizumab or seg101 or selg1).ti,ab                                                                      |
| 8  | (voxelotor or gbt440).ti,ab                                                                                   |
| 9  | Or/6-8                                                                                                        |
| 10 | Or/1-4                                                                                                        |
| 11 | 10 and 5                                                                                                      |
| 12 | 9 or 11                                                                                                       |
| 13 | (addresses or autobiography or bibliography or biography or clinical trial, phase I or comment or             |
|    | congresses or consensus development conference or duplicate publication or editorial or guideline or in       |
|    | vitro or interview or lecture or legal cases or legislation or letter or news or newspaper article or patient |
|    | education handout or periodical index or personal narratives or portraits or practice guideline or review     |
|    | or video audio media).pt.                                                                                     |
| 14 | 12 not 13                                                                                                     |
| 15 | Animals.sh                                                                                                    |
| 16 | Humans.sh                                                                                                     |
| 17 | 15 or (15 and 16)                                                                                             |
| 18 | 14 not 17                                                                                                     |
| 19 | Limit 18 to English Language                                                                                  |
| 20 | Remove duplicates from 19                                                                                     |

## **Table A3. Search Strate**gy for EMBASE

| #1  | 'sickle cell anemia'/exp                                                                            |
|-----|-----------------------------------------------------------------------------------------------------|
| #2  | ((sickle NEAR/3 (disease OR an*emia)):ti,ab) OR 'sickle cell':ti,ab OR meniscocyt*:ti,ab OR         |
|     | drepanocyte*:ti,ab OR sickl*:ti,ab OR ((sc NEAR/3 (disease OR an*emia)):ti,ab)                      |
| #3  | 'hemoglobin s'/exp OR ((h?emoglobin NEAR/5 sickl*):ti,ab)                                           |
| #4  | (h?emoglobin OR hb OR 'hb-' OR hgb) NEAR/3 (ss OR 's-s' OR sc OR 's-c' OR 'sb' OR b0 OR 's-beta' OR |
|     | thalassemia OR 'beta-zero' OR 'beta plus')                                                          |
| #5  | 'glutamine'/mj OR glutamine:ti,ab OR 'l-glutamine':ti,ab                                            |
| #6  | endari:ti,ab OR xyndari:ti,ab                                                                       |
| #7  | 'crizanlizumab' OR seg101:ti,ab OR selg1:ti,ab                                                      |
| #8  | 'voxelotor' OR gbt440:ti,ab                                                                         |
| #9  | #1 OR #2 OR #3 OR #4                                                                                |
| #10 | #6 OR #7 OR #8                                                                                      |
| #11 | #5 AND #9                                                                                           |
| #12 | #10 OR #11                                                                                          |
| #13 | 'animal'/exp or 'nonhuman'/exp or 'animal experiment'/exp NOT 'human'/exp                           |
| #14 | #12 NOT #13                                                                                         |
| #15 | #14 NOT ('case report'/de OR 'human tissue'/de OR 'nonhuman'/de OR 'practice                        |
|     | guideline'/de OR 'questionnaire'/de OR 'chapter'/it OR 'conference review'/it OR                    |
|     | 'editorial'/it OR 'letter'/it OR 'note'/it OR 'review'/it OR 'short survey'/it)                     |
| #16 | #15 AND [english]/lim                                                                               |
| #17 | #16 AND [medline]/lim                                                                               |
| #18 | #16 NOT #17                                                                                         |

Figure A1. PRISMA flow Chart Showing Results of Literature Search for Sickle Cell Disease



## Appendix B. Previous Systematic Reviews and Technology Assessments

NICE: Crizanlizumab for preventing sickle cell crises in sickle cell disease (ID1406], Expected publication date: 24 March 2021

NICE is currently evaluating the clinical and cost effectiveness of crizanlizumab within its marketing authorization for preventing sickle cell disease. Proposed comparators include established clinical management without crizanlizumab including: hydroxycarbamide, blood transfusions, allogenic stem cell trasnplants, or optimal supportive care. Outcomes of interest being evaluated include mortality, number and severity of sickle cell crises, recurrent events, complications of SCD (stroke, acute chest syndrome, organ damage), adverse events, and health related quality of life outcomes.

#### NICE: Voxelotor for treating sickle cell disease [ID1403], Expected publication date: TBC

NICE is currently evaluating the clnical and economic effectiveness of voxelotor for the treatment of sickle cell disease.

## Hutcherson et al. (2019). "Systematic Review of L-Glutamine for Prevention of Vaso-Occlusive Pain Crisis in Patients with Sickle Cell Disease". 110

Investigators conducted a systematic review to evaluate the safety and efficacy of L-glutamine to prevent vaso-occlusive crises (VOCs) in patients with sickle cell disease (SCD). Select inclusion and exclusion criteria used to identify studies included randomized-controlled trials, observational studies, or case studies in patients with sickle cell disease, sickle cell anemia, or thalassemia taking Iglutamine. Studies were excluded if the primary outcomes were not related to the modification of one or more pain-related outcome related to acute pain crises. Ultimately three studies, published under the same author, were included in the review: one nonrandomized controlled trial (1998) and two randomized controlled trials (2014 and 2018). The randomized controlled studies (2014 and 2018) have been included in our review and will not be summarized here, however the 1998 nonrandomized controlled trial was not included in our review because it did not report outcomes of interest. The 1998 nonrandomized, single-center 4-week study evaluated the biochemical effects of oral I-glutamine in seven patients aged 18 and older with genotype HbSS. Patients were excluded if they were pregnant, had blood transfusions in the previous 3 months, or would be concurrently receiving hydroxyurea. After 4 weeks, there was a significant increase in NADH levels and NAD redox potential, with all patients (100%) reporting improvements in energy levels and a decrease in chronic pain levels and 6 (86%) reporting improvements in activity levels and decreased narcotics use.

Authors of the systematic review concluded that there is a limited amount of high-quality data to support the use of L-glutamine in patients with SCD and listed several limitations of the evidence supporting its use. Specifically, the studies were all conducted under the same principal

| investigator, two trials recruited small sample sizes, and inclusion criteria were not generalizable to the broader SCD population. |
|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |

## **Appendix C. Ongoing Studies**

| and Multicenter, Open-Label Study of SEG101 (Crizanlizumab) in Sickle Cell Disease (SCD) Patients with Vaso-Occlusive Crisis (VOC)  NCT03264989  Novartis Pharmaceuticals  Novartis Pharmaceuticals  Novartis Pharmaceuticals  Pharmaceuticals  Multicenter, Open-Label 5.0 mg/kg (or 7.5 mg/kg for exploratory group) by IV  S7  Sickle Cell Disease (SCD) Patients with 5.7  S7  S7  S8  Sickle Cell Disease (SCD) Patients with Vaso-Occlusive Crisis (VOC)  NCT03264989  Novartis Pharmaceuticals  Novartis Pharmaceuticals  Novartis Pharmaceuticals  Multicenter, Crizanlizumab 5.0 mg/kg (or 7.5 mg/kg for exploratory group) by IV  S7  S7  S8  Sample (Ctrough), PK (Cmax), and PD (AUC for P-selectin inhibition) of crizanlizumab at least 1 acute pain crisis within the preceding 12 months prior to screening  4. If receiving HU/HC or erythropoietin stimulating agent, must have been receiving the drug for at least 6 months prior to screening  Exclusion:  1. Male and non-pregnant female patients 16-70 (AUC for P-selectin inhibition) of crizanlizumab at 5.0 mg.kg | Title / Trial Sponsor                                                                                                                                               | Study Design Study Arms                                        |                                                                             | Patient Population                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary<br>Outcomes                                                                                             | Estimated<br>Completion<br>Dates |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|
| and Multicenter, Open-Label Study of SEG101 (Crizanlizumab) in Sickle Cell Disease (SCD) Patients with Vaso-Occlusive Crisis (VOC)  NCT03264989  Novartis Pharmaceuticals  Multicenter, Open-Label Study of SEG101 (Crizanlizumab) in Sickle Cell Disease (SCD) Patients with Vaso-Occlusive Crisis (VOC)  NCT03264989  Novartis Pharmaceuticals  Multicenter, Open-Label S.0 mg/kg (or 7.5 mg/kg for exploratory group) by IV  Something for at least 1 acute pain crisis within the preceding 12 months prior to screening 4. If receiving HU/HC or erythropoietin stimulating agent, must have been receiving the drug for at least 6 months prior to screening  Exclusion: 1. History of stem cell transplant                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |                                                                | Crizar                                                                      | ılizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                  |
| 2. Acute pain crisis ending 7 days prior to first dosing 3. Ongoing hospitalization prior to screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pharmacokinetics and Pharmacodynamics Study of SEG101 (Crizanlizumab) in Sickle Cell Disease (SCD) Patients with Vaso-Occlusive Crisis (VOC)  NCT03264989  Novartis | Phase II, Multicenter, Open-Label <u>Estimated</u> Enrollment: | Crizar  Intervention: Crizanlizumab 5.0 mg/kg (or 7.5 mg/kg for exploratory | Inclusion:  1. Male and non-pregnant female patients 16-70 years of age 2. Confirmed diagnosis of SCD 3. Experienced at least 1 acute pain crisis within the preceding 12 months prior to screening 4. If receiving HU/HC or erythropoietin stimulating agent, must have been receiving the drug for at least 6 months prior to screening  Exclusion: 1. History of stem cell transplant 2. Acute pain crisis ending 7 days prior to first dosing 3. Ongoing hospitalization | 1. To characterize PK (AUC), PK (Ctrough), PK (Cmax), and PD (AUC for Pselectin inhibition) of crizanlizumab at | Dates February                   |
| 4. Received blood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                  |
| products within 30 days to first dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     |                                                                |                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                  |

|                       |                  |                     | 5. Participating in a             |                                          |          |
|-----------------------|------------------|---------------------|-----------------------------------|------------------------------------------|----------|
|                       |                  |                     | chronic transfusion               |                                          |          |
|                       |                  |                     | program                           |                                          |          |
| Study of Dose         | Phase II,        | Intervention:       | Inclusion:                        | 1. PK (AUCd15)                           | August   |
| Confirmation and      | Multicenter,     | Crizanlizumab       | 1. Male or female                 | after 1 <sup>st</sup> dose               | 2022     |
| Safety of             | Open-Label       | 5.0 mg/kg           | patients who are 2                | 2. PD (AUCd15)                           |          |
| Crizanlizumab in      |                  |                     | to <18 years                      | after 1 <sup>st</sup> dose               |          |
| Pediatric Sickle Cell | <u>Estimated</u> |                     | 2. Confirmed                      | 3. PK (AUCtau)                           |          |
| Disease Patients      | Enrollment:      |                     | diagnosis of SCD                  | after 5 <sup>th</sup> dose               |          |
|                       | 100              |                     | 3. Experienced at                 | 4. PD (AUCtau)                           |          |
| NCT03474965           |                  |                     | least 1 acute pain                | after 5 <sup>th</sup> dose               |          |
|                       |                  |                     | crisis within                     | 5. PK (Cmax) after                       |          |
| Novartis              |                  |                     | preceding 12                      | 1 <sup>st</sup> and 5 <sup>th</sup> dose |          |
| Pharmaceuticals       |                  |                     | months, as                        | 6. PK pre-dose                           |          |
|                       |                  |                     | determined by                     | concentrations                           |          |
|                       |                  |                     | medical history                   | 7. Frequency of                          |          |
|                       |                  |                     | 4. If receiving                   | any adverse                              |          |
|                       |                  |                     | HU/HC or                          | events (AEs) as a                        |          |
|                       |                  |                     | erythropoietin                    | measure of safety                        |          |
|                       |                  |                     | stimulating agent or L-glutamine, | and tolerability                         |          |
|                       |                  |                     | must have been                    |                                          |          |
|                       |                  |                     | receiving drug for                |                                          |          |
|                       |                  |                     | at least 6 months                 |                                          |          |
|                       |                  |                     | prior to screening                |                                          |          |
|                       |                  |                     | and plan to                       |                                          |          |
|                       |                  |                     | continue taking the               |                                          |          |
|                       |                  |                     | same dose and                     |                                          |          |
|                       |                  |                     | schedule during                   |                                          |          |
|                       |                  |                     | the trial                         |                                          |          |
|                       |                  |                     |                                   |                                          |          |
|                       |                  |                     | Exclusion:                        |                                          |          |
|                       |                  |                     | 1. History of stem                |                                          |          |
|                       |                  |                     | cell transplant                   |                                          |          |
|                       |                  |                     | 2.Received any                    |                                          |          |
|                       |                  |                     | blood products                    |                                          |          |
|                       |                  |                     | within 30 days of                 |                                          |          |
|                       |                  |                     | Day 1 dosing                      |                                          |          |
|                       |                  |                     | 3. Participating in a             |                                          |          |
|                       |                  |                     | chronic transfusion               |                                          |          |
|                       |                  |                     | program                           |                                          |          |
|                       |                  |                     | 4. Patients with                  |                                          |          |
|                       |                  |                     | bleeding disorders                |                                          |          |
| Study of Two Doses    | Phase III,       | <u>Intervention</u> | Inclusion:                        | 1. Rate of acute                         | November |
| of Crizanlizumab      | Multicenter,     | <u>1:</u>           | 1. Male or female                 | pain crises events                       | 2027     |
| Versus Placebo in     |                  |                     | aged 12 years and                 |                                          |          |

| Adolescent and    | Randomized,      | Crizanlizumab | older on day of       | leading to       |
|-------------------|------------------|---------------|-----------------------|------------------|
| Adult Sickle Cell | Double-Blind     | 5.0mg/kg      | signing informed      | healthcare visit |
| Disease Patients  |                  |               | consent               |                  |
|                   | <u>Estimated</u> | Intervention  | 2. Confirmed          |                  |
| NCT03814746       | Enrollment:      | <u>2:</u>     | diagnosis of SCD      |                  |
|                   | 240              | Crizanlizumab | 3. Experienced at     |                  |
| Novartis          |                  | 7.5 mg/kg     | least 2 acute pain    |                  |
| Pharmaceuticals   |                  |               | crises leading to     |                  |
|                   |                  | Comparator:   | healthcare visit      |                  |
|                   |                  | Placebo       | within 12 months      |                  |
|                   |                  |               | prior to screening    |                  |
|                   |                  |               | visit as determined   |                  |
|                   |                  |               | by medical history    |                  |
|                   |                  |               | 4. If receiving       |                  |
|                   |                  |               | HU/HC or              |                  |
|                   |                  |               | erythropoietin        |                  |
|                   |                  |               | stimulating agent     |                  |
|                   |                  |               | or L-glutamine,       |                  |
|                   |                  |               | must have been        |                  |
|                   |                  |               | receiving drug for    |                  |
|                   |                  |               | at least 6 months     |                  |
|                   |                  |               | prior to screening    |                  |
|                   |                  |               | Exclusion:            |                  |
|                   |                  |               | 1.History of stem     |                  |
|                   |                  |               | cell transplant       |                  |
|                   |                  |               | 2. Participation in a |                  |
|                   |                  |               | chronic transfusion   |                  |
|                   |                  |               | program               |                  |
|                   |                  |               | 3. Contraindication   |                  |
|                   |                  |               | or hypersensitivity   |                  |
|                   |                  |               | to any drug or        |                  |
|                   |                  |               | metabolites from      |                  |
|                   |                  |               | similar class as a    |                  |
|                   |                  |               | study drug or to      |                  |
|                   |                  |               | any excipients of     |                  |
|                   |                  |               | the study drug        |                  |
|                   |                  |               | formulation           |                  |
|                   |                  |               | 4. Received active    |                  |
|                   |                  |               | treatment on          |                  |
|                   |                  |               | another               |                  |
|                   |                  |               | investigational trial |                  |
|                   |                  |               | within 30 days        |                  |
|                   |                  |               | prior to screening    |                  |

| A Study to Evaluate | Prospective      | Intervention: | Inclusion:           | 1. Percent change | March 2022 |
|---------------------|------------------|---------------|----------------------|-------------------|------------|
| the Safety and      | Phase II,        | Crizanlizumab | 1. Male patients     | in priapic events |            |
| Efficacy of         | Multicenter,     | 5mg/kg IV     | aged 16 years and    | from baseline to  |            |
| Crizanlizumab in    | Open-Label,      |               | above                | 26 weeks          |            |
| Sickle Cell Disease | Single-Arm       |               | 2. Confirmed         |                   |            |
| Related Priapism    |                  |               | diagnosis of SCD     |                   |            |
|                     | <u>Estimated</u> |               | 3. Experienced 4 or  |                   |            |
| NCT03938454         | Enrollment:      |               | more priapic         |                   |            |
|                     | 56               |               | events over the 14   |                   |            |
| Novartis            |                  |               | weeks preceding      |                   |            |
| Pharmaceuticals     |                  |               | study participation  |                   |            |
|                     |                  |               | 4. Experienced at    |                   |            |
|                     |                  |               | least 3 priapic      |                   |            |
|                     |                  |               | events during the    |                   |            |
|                     |                  |               | 12 week screening    |                   |            |
|                     |                  |               | period with at least |                   |            |
|                     |                  |               | 1 event occurring    |                   |            |
|                     |                  |               | within 4 weeks       |                   |            |
|                     |                  |               | prior to the first   |                   |            |
|                     |                  |               | treatment            |                   |            |
|                     |                  |               |                      |                   |            |
|                     |                  |               | Exclusion:           |                   |            |
|                     |                  |               | 1.Had penile         |                   |            |
|                     |                  |               | prosthetic implants  |                   |            |
|                     |                  |               | or shunts or any     |                   |            |
|                     |                  |               | other surgical       |                   |            |
|                     |                  |               | procedure on the     |                   |            |
|                     |                  |               | penis                |                   |            |
|                     |                  |               | 2. Took              |                   |            |
|                     |                  |               | drugs/medications    |                   |            |
|                     |                  |               | that may induce      |                   |            |
|                     |                  |               | priapism over the    |                   |            |
|                     |                  |               | 14 weeks             |                   |            |
|                     |                  |               | preceding study      |                   |            |
|                     |                  |               | entry                |                   |            |
|                     |                  |               | 3. Received          |                   |            |
|                     |                  |               | leuprolide acetate   |                   |            |
|                     |                  |               | (Lupron) within 3    |                   |            |
|                     |                  |               | months before pre-   |                   |            |
|                     |                  |               | screening            |                   |            |
|                     |                  |               | 4. Had an erection   |                   |            |
|                     |                  |               | lasting more than    |                   |            |
|                     |                  |               | 12 hours over the    |                   |            |
|                     |                  |               | 14 week preceding    |                   |            |
|                     |                  |               | study entry          |                   |            |

| Study Exploring the | Phase II,        | Intervention: | Inclusion:           | 1. Percentage of  | July 2022 |
|---------------------|------------------|---------------|----------------------|-------------------|-----------|
| Effect of           | Randomized,      | Crizanlizumab | 1. Confirmed         | patients with ≥   |           |
| Crizanlizumab on    | Multicenter,     | (5mg/kg) +    | diagnosis of SCD     | 30% decrease in   |           |
| Kidney Function in  | Open-Label,      | standard of   | 2. Patients with     | albuminuria (ACR) |           |
| Patients With       |                  | care          | eGFR ≥ 45 ≤ 120      |                   |           |
| Chronic Kidney      | <u>Estimated</u> |               | mL/min/1.73 m2       |                   |           |
| Disease Caused by   | Enrollment:      | Comparator:   | based on CKD EPI     |                   |           |
| Sickle Cell Disease | 170              | Standard of   | formula              |                   |           |
|                     |                  | care (HU/HC,  | 3. Patients with     |                   |           |
| NCT04053764         |                  | ACE, and      | ACR of ≥ 100 to ≤    |                   |           |
|                     |                  | ARBs)         | 2000 mg/g            |                   |           |
| Novartis            |                  |               | 4. Receiving         |                   |           |
| Pharmaceuticals     |                  |               | standard of care     |                   |           |
|                     |                  |               | drugs for SCD        |                   |           |
|                     |                  |               | and/or CKD for at    |                   |           |
|                     |                  |               | least 6 months       |                   |           |
|                     |                  |               | prior to study entry |                   |           |
|                     |                  |               | 5. Hb ≥ 4.0 g/dL,    |                   |           |
|                     |                  |               | absolute             |                   |           |
|                     |                  |               | neutrophil count     |                   |           |
|                     |                  |               | (ANC) ≥ 1.0 x        |                   |           |
|                     |                  |               | 109/L, and platelet  |                   |           |
|                     |                  |               | count ≥ 75x109/L     |                   |           |
|                     |                  |               | 6. Written           |                   |           |
|                     |                  |               | informed consent     |                   |           |
|                     |                  |               | prior to screening   |                   |           |
|                     |                  |               | procedures           |                   |           |
|                     |                  |               | Exclusion:           |                   |           |
|                     |                  |               | 1. History of stem   |                   |           |
|                     |                  |               | cell transplant      |                   |           |
|                     |                  |               | 2. Patients with     |                   |           |
|                     |                  |               | evidence of AKI      |                   |           |
|                     |                  |               | within 3 months of   |                   |           |
|                     |                  |               | study entry          |                   |           |
|                     |                  |               | 3. Blood pressure >  |                   |           |
|                     |                  |               | 140/90 mmHg          |                   |           |
|                     |                  |               | despite treatment    |                   |           |
|                     |                  |               | 4. Patients          |                   |           |
|                     |                  |               | undergoing           |                   |           |
|                     |                  |               | hemodialysis         |                   |           |
|                     |                  |               | 5. Participating in  |                   |           |
|                     |                  |               | chronic transfusion  |                   |           |
|                     |                  |               | program              |                   |           |
|                     |                  |               | 6. History of kidney |                   |           |
|                     |                  |               | transplant           |                   |           |

| Voxelotor                 |                  |                 |                      |                    |            |  |  |  |  |  |
|---------------------------|------------------|-----------------|----------------------|--------------------|------------|--|--|--|--|--|
| Study to Assess the       | Phase III,       | Intervention:   | Inclusion:           | 1. Number of       | December   |  |  |  |  |  |
| Effect of Long-Term       | Open-Label       | Voxelotor       | 1. Participants with | participants       | 2019       |  |  |  |  |  |
| Treatment with            |                  | 300mg with      | SCD who              | with               |            |  |  |  |  |  |
| GBT440 in                 | <u>Estimated</u> | or without      | participated or      | treatment-         |            |  |  |  |  |  |
| Participants Who          | Enrollment:      | food            | received study       | related            |            |  |  |  |  |  |
| Have Completed            | 179              |                 | treatment in study   | adverse            |            |  |  |  |  |  |
| Treatment in Study        |                  |                 | GBT440-031           | events             |            |  |  |  |  |  |
| GBT 440-031 (034          |                  |                 |                      | 2. Frequency of    |            |  |  |  |  |  |
| OLE)                      |                  |                 | Exclusion:           | sickle-cell        |            |  |  |  |  |  |
|                           |                  |                 | 1. Participant who   | complications      |            |  |  |  |  |  |
| NCT03573882               |                  |                 | was lost to follow-  |                    |            |  |  |  |  |  |
|                           |                  |                 | up in previous       |                    |            |  |  |  |  |  |
| Global Blood              |                  |                 | study                |                    |            |  |  |  |  |  |
| Therapeutics              |                  |                 | 2. Patient requiring |                    |            |  |  |  |  |  |
|                           |                  |                 | chronic dialysis     |                    |            |  |  |  |  |  |
| An Open-Label             | Open-label       | Intervention:   | Inclusion:           | 1. Treatment-      | January    |  |  |  |  |  |
| Extension Study of        | Extension        | ≥ 12 years:     | 1. Participants with | Emergent Adverse   | 2026       |  |  |  |  |  |
| Voxelotor                 |                  | 1500 mg QD      | SCD, aged ≥ 4 to ≤   | Events             |            |  |  |  |  |  |
| Administered Orally       | <u>Estimated</u> |                 | 18                   | 2. Serious Adverse |            |  |  |  |  |  |
| to Pediatric              | Enrollment:      | < 12 years:     | 2. Participated and  | Events             |            |  |  |  |  |  |
| Participants With         | 50               | weight-based    | received study       | 3. Sickle Cell     |            |  |  |  |  |  |
| Sickle Cell Disease       |                  | dose            | drug in GBT-         | Disease-Related    |            |  |  |  |  |  |
| Who Have                  |                  |                 | sponsored            | Complications      |            |  |  |  |  |  |
| Participated in           |                  |                 | voxelotor pediatric  |                    |            |  |  |  |  |  |
| <b>Voxelotor Clinical</b> |                  |                 | clinical study       |                    |            |  |  |  |  |  |
| Trials                    |                  |                 |                      |                    |            |  |  |  |  |  |
|                           |                  |                 | Exclusion:           |                    |            |  |  |  |  |  |
| NCT04188509               |                  |                 | 1. Participant       |                    |            |  |  |  |  |  |
|                           |                  |                 | withdrew consent     |                    |            |  |  |  |  |  |
| Global Blood              |                  |                 | from GBT-            |                    |            |  |  |  |  |  |
| Therapeutics              |                  |                 | sponsored            |                    |            |  |  |  |  |  |
|                           |                  |                 | voxelotor pediatric  |                    |            |  |  |  |  |  |
|                           |                  |                 | clinical study       |                    |            |  |  |  |  |  |
| Study to Evaluate         | Phase III        | Intervention:   | <u>Inclusion</u>     | 1. Transcranial    | March 2026 |  |  |  |  |  |
| the Effect of             | Double-Blind,    | 1500mg          | 1. Participants with | Doppler (TCD)      |            |  |  |  |  |  |
| GBT440 on TCD in          | Placebo-         | voxelotor or    | SCA                  |                    |            |  |  |  |  |  |
| Pediatrics With           | Controlled,      | equivalent      | 2. Aged ≥ 2 to < 15  |                    |            |  |  |  |  |  |
| Sickle Cell Disease       | RCT              | daily as tablet | years                |                    |            |  |  |  |  |  |
| (HOPE Kids 2)             |                  | or powder for   | 3. Hb ≥ 5.5 and ≤    |                    |            |  |  |  |  |  |
|                           | <u>Estimated</u> | oral            | 10.5 g/dL            |                    |            |  |  |  |  |  |
| NCT04218084               | Enrollment:      | suspension      | 4. TCD time          |                    |            |  |  |  |  |  |
|                           | 224              |                 | averaged             |                    |            |  |  |  |  |  |
| Global Blood              |                  |                 | maximum of the       |                    |            |  |  |  |  |  |
| Therapeutics              |                  |                 | mean velocity        |                    |            |  |  |  |  |  |

| Comparato                        | or arterial cerebral  |  |  |  |  |  |
|----------------------------------|-----------------------|--|--|--|--|--|
| matching                         | blood blood ≥170      |  |  |  |  |  |
| placebo                          | to <200 cm/sec        |  |  |  |  |  |
|                                  | during the            |  |  |  |  |  |
|                                  | screening period      |  |  |  |  |  |
|                                  |                       |  |  |  |  |  |
|                                  | Exclusion             |  |  |  |  |  |
|                                  | 1. Body weight        |  |  |  |  |  |
|                                  | <5kg at screening     |  |  |  |  |  |
|                                  | visit                 |  |  |  |  |  |
|                                  | 2.Hospitalization     |  |  |  |  |  |
|                                  | for acute pain crisis |  |  |  |  |  |
|                                  | and ACS within the    |  |  |  |  |  |
|                                  | 14 days prior to      |  |  |  |  |  |
|                                  | execution of          |  |  |  |  |  |
|                                  | informed consent      |  |  |  |  |  |
|                                  | 3. More than 10       |  |  |  |  |  |
|                                  | acute pain crises     |  |  |  |  |  |
|                                  | within past 12        |  |  |  |  |  |
|                                  | months requiring      |  |  |  |  |  |
|                                  | hospitalization or    |  |  |  |  |  |
|                                  | clinic visit          |  |  |  |  |  |
| L-Glutamine                      |                       |  |  |  |  |  |
| No on-going trials at this time. |                       |  |  |  |  |  |

Source: www.ClinicalTrials.gov (NOTE: studies

# Appendix D. Comparative Clinical Effectiveness Supplemental Information

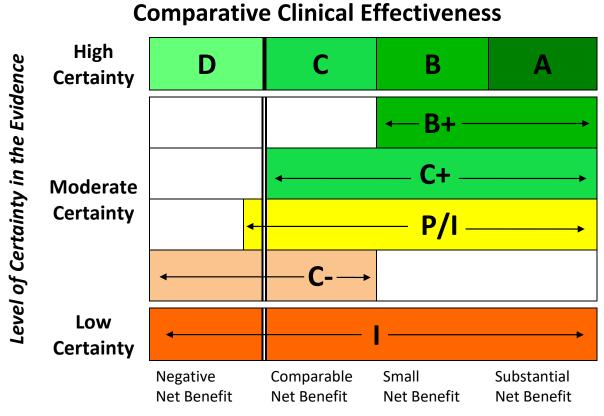
We performed screening at both the abstract and full-text level. A single investigator screened all abstracts identified through electronic searches according to the inclusion and exclusion criteria described earlier. We did not exclude any study at abstract-level screening due to insufficient information. For example, an abstract that did not report an outcome of interest would be accepted for further review in full text. We retrieved the citations that were accepted during abstract-level screening for full text appraisal. One investigator reviewed full papers and provided justification for exclusion of each excluded study.

We also included FDA documents related to crizanlizumab, voxelotor, and L-glutamine (Endari). These included the manufacturer's submission to the agency, internal FDA review documents, and the transcript of Advisory Committee deliberations and discussions. All literature that did not undergo a formal peer review process is described separately.

We used criteria published by the US Preventive Services Task Force (USPSTF) to assess the quality of RCTs and comparative cohort studies, using the categories "good," "fair," or "poor" (see Appendix Tables D1, D7, and D13){, , U.S. Preventive Services Task Force Procedure Manual} Guidance for quality ratings using these criteria is presented below, as is a description of any modifications we made to these ratings specific to the purposes of this review.

**Good:** Meets all criteria: Comparable groups are assembled initially and maintained throughout the study; reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention is paid to confounders in analysis. In addition, intention to treat analysis is used for RCTs.

**Fair:** Studies were graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs.


**Poor:** Studies were graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.

Note that case series are not considered under this rating system – because of the lack of comparator, these are generally considered to be of poor quality.

### **ICER Evidence Rating**

We used the <u>ICER Evidence Rating Matrix</u> (see Figure D1) to evaluate the evidence for a variety of outcomes. The evidence rating reflects a joint judgment of two critical components:

- a) The **magnitude** of the difference between a therapeutic agent and its comparator in "net health benefit" the balance between clinical benefits and risks and/or adverse effects AND
- b) The level of **certainty** in the best point estimate of net health benefit.{Ollendorf, 2010, 79}



## Comparative Net Health Benefit

- A = "Superior" High certainty of a substantial (moderate-large) net health benefit
- **B = "Incremental"** High certainty of a small net health benefit
- C = "Comparable" High certainty of a comparable net health benefit
- **D = "Negative"** High certainty of an inferior net health benefit
- B+ = "Incremental or Better" Moderate certainty of a small or substantial net health benefit, with high certainty of at least a small net health benefit
- C+ = "Comparable or Better" Moderate certainty of a comparable, small, or substantial net health benefit, with high certainty of at least a comparable net health benefit
- P/I = "Promising but Inconclusive" Moderate certainty of a comparable, small, or substantial net health benefit, and a small (but nonzero) likelihood of a negative net health benefit
- C- = "Comparable or Inferior" Moderate certainty that the comparative net health benefit is either comparable or inferior
- I = "Insufficient" Any situation in which the level of certainty in the evidence is low

Table D1. Study Quality of Crizanlizumab SUSTAIN Trial{Ataga, 2017, 1001}

| Study                 | Comparable<br>Groups | Adequate<br>Randomization | Patient<br>Blinding | Physician<br>Blinding | Outcome<br>Adjudication<br>Blinding | Non-<br>Differential<br>Follow-Up | ITT<br>Analysis | Appropriate Handling of Missing Data | Overall<br>Quality |
|-----------------------|----------------------|---------------------------|---------------------|-----------------------|-------------------------------------|-----------------------------------|-----------------|--------------------------------------|--------------------|
| SUSTAIN<br>Ataga 2017 | Yes                  | Yes                       | Yes                 | Yes                   | Yes                                 | Yes                               | Yes             | Yes                                  | Good               |

ITT: intent-to-treat

Table D2. Study Design of the SUSTAIN trial{Ataga, 2017, 1001}

| Study                     | Crizanlizumab (SUSTAIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design                    | Phase 2, double-blind, randomized, placebo-controlled trial. Patients were randomized 1:1:1 to receive low-dose crizanlizumab (2.5mg/kg of body weight), high dose crizanlizumab (5.0mg/kg of body weight) or placebo and were stratified by number of crises in the preceding year (2 to 4 or 5 to 10) and concomitant hydroxyurea use (yes or no).                                                                                                                                                                                                                                             |
| Inclusion Criteria        | <ul> <li>Sickle cell disease (homozygous hemoglobin S [HbSS], sickle hemoglobin C disease [HbSC], sickle β<sup>0</sup> thalassemia [HbSβ<sup>0</sup>], sickle β<sup>+</sup> thalassemia [HbSβ<sup>+</sup>] or other genotypes)</li> <li>16-65 years of age</li> <li>2 to 10 sickle-cell related pain crises in 12 months before enrollment</li> <li>Patients on hydroxyurea were required to have been receiving the drug for at least 6-months and were not allowed to have any dose alteration during the 52-weeks. If patients were not on hydroxyurea, it could not be initiated.</li> </ul> |
| <b>Exclusion Criteria</b> | Patients undergoing long-term red-cell transfusion therapy were excluded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N                         | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Interventions             | <ul> <li>2.5mg/kg Crizanlizumab (N=66)</li> <li>5.0 mg/kg Crizanlizumab (N=67)</li> <li>Placebo (N=65)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Follow-up                 | 30-day screening phase, 52-week treatment phase, and a 6-week follow-ep evaluation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Outcomes** 

- Primary Endpoint: Annual rate of sickle-cell related pain crises
- Secondary Endpoints:
  - o Annual rate of days hospitalized
  - Time to first and second crises
  - Annual rate of uncomplicated crises
  - o Annual rate of acute chest syndrome
  - o The Brief Pain Inventory Questionnaire

Table D3. Key Baseline Characteristics of the SUSTAIN Trial{Ataga, 2017, 1001}

| Study                                                   |                 | Ataga 2017            |                       |            |  |
|---------------------------------------------------------|-----------------|-----------------------|-----------------------|------------|--|
| Interventions                                           |                 | High-Dose Criz        | Low-Dose Criz         | Placebo    |  |
| N                                                       | N               |                       | 66                    | 65         |  |
| Age, Median (Range)                                     |                 | 29 (16-63)            | 29 (17-57)            | 26 (16-56) |  |
| Female, n (%)                                           |                 | 35 (52)               | 36 (55)               | 38 (58)    |  |
| Black, n (%)                                            |                 | 60 (90)               | 62 (94)               | 60 (92)    |  |
| Concomitant Hydroxyurea, n (%)                          | Yes             | 42 (63)               | 41 (62)               | 40 (62)    |  |
|                                                         | No              | 25 (37)               | 25 (38)               | 25 (38)    |  |
| HbSS Genotype, n (%)                                    | HbSS            | 47 (70)               | 47 (71)               | 47 (72)    |  |
|                                                         | HbSC            | 9 (13)                | 15 (23)               | 8 (12)     |  |
|                                                         | HbSβ0           | 3 (4)                 | 2 (3)                 | 7 (11)     |  |
|                                                         | HbSβ+           | 7 (10)                | 2 (3)                 | 1 (2)      |  |
|                                                         | Other           | 1 (1)                 | 0 (0)                 | 2 (3)      |  |
| Sickle-Cell Related Pain crises in                      | 2-4             | 42 (63)               | 41 (62)               | 41 (63)    |  |
| past 12 months                                          | 5-10            | 25 (37)               | 25 (38)               | 24 (37)    |  |
| Baseline hemoglobin level — g/dl                        |                 | 9.1 (1.8)             | 9.2 (1.9)             | 9.0 (1.5)  |  |
| Mean (SD)                                               |                 |                       |                       |            |  |
| No. of vaso-occlusive crises in the past 12 months N(%) |                 | NR                    | NR                    | NR         |  |
| Criz: crizanlizumab, g/dl: grams per d                  | eciliter, N: nu | mber, NR: not reporte | d, SD: standard devia | tion       |  |

Table D4. Key Efficacy Outcomes in SUSTAIN{Ataga, 2017, 1001;Liles, 2018, 1002; Kutlar, 2019, 1011; Ataga, 2019, 1012}

| Study                              |                                                     |                                               | At               | aga 2017 + Kutlar 2019 |                    |
|------------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------|------------------------|--------------------|
| Interventions                      |                                                     |                                               | High-Dose Criz   | Low-Dose Criz          | Placebo            |
| N                                  |                                                     |                                               | 67               | 66                     | 65                 |
| Acute Pain Crisis                  | ITT                                                 |                                               |                  |                        |                    |
|                                    |                                                     | te/year (IQR)                                 | 1.63 (0.00-3.97) | 2.01 (1.00-3.98)       | 2.98 (1.25-5.87)   |
|                                    | % Difference                                        | ,                                             | -45.3; P=0.01    | -32.6; P=0.18          | NR; NR             |
|                                    |                                                     | ents with crisis rate of zero at end of trial | 24               | 12                     | 11                 |
|                                    | PP                                                  |                                               | (                |                        | 2 (2 (1 2 2 1 2 2) |
|                                    |                                                     | te/year (IQR)                                 | 1.04 (0.00-3.42) | 2.00 (1.00-3.02)       | 2.18 (1.96-4.96)   |
|                                    | % Difference                                        |                                               | NR; P=0.01       | NR; P-0.13             | NR; P=0.02         |
|                                    |                                                     | ents with crisis rate of zero at end of trial | 15               | 7                      | 5                  |
| Acute Chest Syndrome               | Median Ra                                           | te/year (IQR)                                 | 0 (0.00-0.00)    | 0 (0.00-0.00)          | 0 (0.00-0.00)      |
|                                    | % Difference                                        | ce; P-Value                                   | 0.0; p=0.78      | 0.0; P=0.87            |                    |
| Splenic Sequestration              |                                                     | te/year (IQR)                                 | NR               | NR                     | NR                 |
|                                    | % Differen                                          | ce; P-Value                                   | NR               | NR                     | NR                 |
| Annual Rate of Uncomplicated       | Median Rate/year (IQR)                              |                                               | 1.08 (0.00-3.96) | 2.00 (0.00-3.02)       | 2.91 (1.00-5.00)   |
| sickle-cell related pain crisis    | % Difference; P-Value                               |                                               | -62.9; P=0.02    | -31.3; P=0.12          |                    |
|                                    | Acute pain crisis events in the year prior to study |                                               |                  |                        |                    |
|                                    | Median                                              | 2-4                                           | 1.00 (0-11.8)    | NR                     | 1.97 (0-13.3)      |
|                                    | Rate/year                                           | 5-10                                          | 1.85 (0-24.3)    | NR                     | 4.84 (0-19.2)      |
|                                    | Genotype                                            |                                               |                  |                        |                    |
|                                    | Median                                              | HbSS                                          | 1.63 (0-24.3)    | NR                     | 3.00 (0-19.2)      |
|                                    | Rate/year                                           | Non-HbSS                                      | 0.99 (0-15.2)    | NR                     | 2.00 (0-13.3)      |
|                                    | HU Use                                              |                                               |                  |                        |                    |
|                                    | Median                                              | Yes                                           | 1.74 (024.3)     | NR                     | 3.13 (0-13.5)      |
|                                    | Rate/year                                           | No                                            | 0.98 (0-11.8)    | NR                     | 1.98 (0-19.2)      |
| Patients with no acute pain crisis | ITT                                                 |                                               |                  |                        |                    |
| during treatment, n(%)             | 0                                                   |                                               | 24 (35.8)        | NR                     | 11 (16.9)          |
|                                    | PP**                                                |                                               |                  |                        |                    |
|                                    | 0                                                   |                                               | 15 (37.5)        | NR                     | 5 (12.2)           |
|                                    | Acute pain                                          | crisis events in the year prior to the study  |                  |                        |                    |
|                                    | 2-4                                                 | , .                                           | 17/42 (40.5)     | NR                     | 10/41 (24.4)       |
|                                    |                                                     |                                               |                  |                        | , :- (- :: )       |

|                                   | 5-10                                                  | 7/25 (28.0)         | NR                      | 1/24 (4.2)              |
|-----------------------------------|-------------------------------------------------------|---------------------|-------------------------|-------------------------|
|                                   | Genotype                                              | 7723 (20.0)         | IVIX                    | 1/27 (4.2)              |
|                                   | HbSS                                                  | 15/47/21 0)         | NR                      | 0/47/17 0\              |
|                                   |                                                       | 15/47 (31.9)        |                         | 8/47 (17.0)             |
|                                   | Non-HbSS                                              | 9/20 (45.0)         | NR                      | 3/18 (16.7)             |
|                                   | HU Use                                                |                     |                         |                         |
|                                   | Yes                                                   | 14/42 (33.3)        | NR                      | 7/40 (17.5)             |
|                                   | Nonii                                                 | 10/25 (40.0)        | NR                      | 4/25 (16.0)             |
|                                   | HU use / acute pain crisis events in the year prior t | o study             |                         |                         |
|                                   | Yes/2-4                                               | 11/25 (44.0)        | NR                      | 6/24 (25.0)             |
|                                   | Yes/5-10                                              | 3/17 (17.6)         | NR                      | 1/16 (6.3)              |
|                                   | No/2-4                                                | 6/17 (35.3)         | NR                      | 4/17 (23.5)             |
|                                   | No/5-10                                               | 4/8 (50.0)          | NR                      | 0/8 (0.0)               |
| Hepatic Sequestration             | Median Rate/year (IQR)                                | NR                  | NR                      | NR                      |
|                                   | % Difference; P-value                                 | NR                  | NR                      | NR                      |
| Priapism                          | Median Rate/year (IQR)                                | NR                  | NR                      | NR                      |
|                                   | % Difference; P-value                                 | NR                  | NR                      | NR                      |
| Hospitalization                   | No Hospitalization                                    | 46%                 | NR                      | 35%                     |
|                                   | ≥1 Hospitalization                                    | 54%                 | NR                      | 65%                     |
|                                   | Median time to first hospitalization (months)         | 6.3                 | NR                      | 3.2                     |
|                                   | HR [95%CI]                                            | 0.683 [0.437-1.066] | NR                      | 0.683 [0.437-<br>1.066] |
|                                   | Median Rate/year (IQR)                                | 4.00 (0.00-25.72)   | 6.87 (0.00-18.00)       | 6.87 (0.00-28.30)       |
|                                   | % Difference; P-Value                                 | -41.8; P=0.45       | 0.00; P=0.84            |                         |
| Brief Pain Inventory              | Mean Score Change                                     |                     | Small change*           |                         |
|                                   | Difference; p-value                                   | No sign             | ificant changes from ba | seline*                 |
| Time to First Sickle-Cell Related | ITT                                                   |                     |                         |                         |
| Pain Crisis                       | Median time (IQR)                                     | 4.07 (1.31-NR)      | 2.20 (0.95-6.60)        | 1.38 (0.39-4.90)        |
|                                   | Hazard ratio (95% CI)                                 | 0.50 (0.33-0.74)    | 0.75 (0.52-1.10)        |                         |
|                                   | P-Value                                               | 0.001               | 0.14                    |                         |
|                                   | PP                                                    |                     |                         |                         |
|                                   | Median time (IQR)                                     | 6.55 (3.02-NR)      | NR                      | 1.58 (0.46-4.93)        |
|                                   | Hazard ratio (95% CI)                                 | NR                  | NR                      | NR                      |
|                                   | P-Value                                               | 0.001               | NR                      | <0.001                  |

| Hazard ratio (95% CI)  5-10  Median time  Hazard ratio (95% CI)  Median time  Hazard ratio (95% CI)  Median time  Hazard ratio (95% CI)  Median time  HbSS  Median time  Hazard ratio (95% CI)  Median time  Hazard ratio (95% CI)  Mon-  Median time  Media |             | A such a residen  | aulala accamba in Alan comunulanta atrodo |                  |                   |                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------------------------------------|------------------|-------------------|-------------------|--|--|
| Hazard ratio (95% CI)  5-10  Median time  2.43 (1.25-7.75)  NR  1.03 (0.31-0.90)  Hazard ratio (95% CI)  0.47 (0.25-0.89)  NR  0.47 (0.25-0.89)  MR  0.47 (0.25-0.89)  Genotype  HbSS  Median time  4.07 (1.31-NR)  NR  1.12 (0.33-4.17)  Non-  Hazard ratio (95% CI)  Non-  HbSS  Hazard ratio (95% CI)  NR  NR  3.09 (1.12-6.21)  HbSS  Hazard ratio (95% CI)  NR  NR  0.47 (0.21-1.05)  HU Use  Yes  Median time  2.43 (1.15-NR)  NR  1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Acute pain        |                                           |                  |                   |                   |  |  |
| 5-10 Median time 2.43 (1.25-7.75) NR 1.03 (0.30-2.97) Hazard ratio (95% CI) 0.47 (0.25-0.89) NR 0.47 (0.25-0.89)  Genotype HbSS Median time 4.07 (1.31-NR) NR 1.12 (0.33-4.17) Hazard ratio (95% CI) 0.50 (0.31-0.80) NR 0.50 (0.31-0.80) Non- Median time 6.90 (1.41-NR) NR 3.09 (1.12-6.21) HbSS Hazard ratio (95% CI) NR NR 0.47 (0.21-1.05)  HU Use  Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 2-4               | Median time                               | 4.76 (1.81-NR)   | NR                | 1.61 (0.62-6.70)  |  |  |
| Hazard ratio (95% CI) 0.47 (0.25-0.89) NR 0.47 (0.25-0.89)  Genotype  HbSS Median time 4.07 (1.31-NR) NR 1.12 (0.33-4.17) Hazard ratio (95% CI) 0.50 (0.31-0.80) NR 0.50 (0.31-0.80)  Non- Median time 6.90 (1.41-NR) NR 3.09 (1.12-6.21) HbSS Hazard ratio (95% CI) NR NR 0.47 (0.21-1.05)  HU Use  Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                   | Hazard ratio (95% CI)                     | 0.53 (0.31-0.90) | NR                | 0.53 (0.31-0.90)  |  |  |
| Genotype         HbSS       Median time       4.07 (1.31-NR)       NR       1.12 (0.33-4.17)         Hazard ratio (95% CI)       0.50 (0.31-0.80)       NR       0.50 (0.31-0.80)         Non-       Median time       6.90 (1.41-NR)       NR       3.09 (1.12-6.21)         HbSS       Hazard ratio (95% CI)       NR       NR       0.47 (0.21-1.05)         HU Use         Yes       Median time       2.43 (1.15-NR)       NR       1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 5-10              | Median time                               | 2.43 (1.25-7.75) | NR                | 1.03 (0.30-2.97)  |  |  |
| HbSS Median time 4.07 (1.31-NR) NR 1.12 (0.33-4.17) Hazard ratio (95% CI) 0.50 (0.31-0.80) NR 0.50 (0.31-0.80)  Non- Median time 6.90 (1.41-NR) NR 3.09 (1.12-6.21) HbSS Hazard ratio (95% CI) NR NR 0.47 (0.21-1.05)  HU Use  Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   | Hazard ratio (95% CI)                     | 0.47 (0.25-0.89) | NR                | 0.47 (0.25-0.89)  |  |  |
| Hazard ratio (95% CI)  Non- HbSS Hazard ratio (95% CI)  NR  0.50 (0.31-0.80)  NR  0.50 (0.31-0.80)  NR  3.09 (1.12-6.21)  NR  NR  0.47 (0.21-1.05)  HU Use  Yes  Median time  2.43 (1.15-NR)  NR  1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Genotype          |                                           |                  |                   |                   |  |  |
| Non-<br>HbSS       Median time       6.90 (1.41-NR)       NR       3.09 (1.12-6.21)         HU Use       NR       NR       0.47 (0.21-1.05)         Yes       Median time       2.43 (1.15-NR)       NR       1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | HbSS              | Median time                               | 4.07 (1.31-NR)   | NR                | 1.12 (0.33-4.17)  |  |  |
| HbSS Hazard ratio (95% CI) NR NR 0.47 (0.21-1.05)  HU Use  Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                   | Hazard ratio (95% CI)                     | 0.50 (0.31-0.80) | NR                | 0.50 (0.31-0.80)  |  |  |
| HU Use  Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Non-              | Median time                               | 6.90 (1.41-NR)   | NR                | 3.09 (1.12-6.21)  |  |  |
| Yes Median time 2.43 (1.15-NR) NR 1.15 (0.33-4.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | HbSS              | Hazard ratio (95% CI)                     | NR               | NR                | 0.47 (0.21-1.05)  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | HU Use            |                                           |                  |                   |                   |  |  |
| Hazard ratio (95% CI) 0.58 (0.35-0.96) NR 0.58 (0.35-0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Yes               | Median time                               | 2.43 (1.15-NR)   | NR                | 1.15 (0.33-4.90)  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | Hazard ratio (95% CI)                     | 0.58 (0.35-0.96) | NR                | 0.58 (0.35-0.96)  |  |  |
| No Median time 5.68 (3.09-NR) NR 2.86 (0.79-4.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | No                | Median time                               | 5.68 (3.09-NR)   | NR                | 2.86 (0.79-4.53)  |  |  |
| Hazard ratio (95% CI) 0.39 (0.20-0.76) NR 0.39 (0.20-0.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                   | Hazard ratio (95% CI)                     | 0.39 (0.20-0.76) | NR                | 0.39 (0.20-0.76)  |  |  |
| Time to Second Sickle-Cell Related ITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | ITT               |                                           |                  |                   |                   |  |  |
| Pain Crisis Median time (IQR) 10.32 (4.47-NR) 9.20 (3.94-12.16) 5.09 (2.96-11.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pain Crisis | Median time (IQR) |                                           | 10.32 (4.47-NR)  | 9.20 (3.94-12.16) | 5.09 (2.96-11.01) |  |  |
| Hazard ratio (95% CI) 0.53 (0.33-0.87) 0.69 (0.44-1.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Hazard ratio      | o (95% CI)                                | 0.53 (0.33-0.87) | 0.69 (0.44-1.09)  |                   |  |  |
| P-Value 0.02 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                   |                                           | 0.02             | 0.1               |                   |  |  |
| HU Use: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | HU Use: No        |                                           |                  |                   |                   |  |  |
| Hazard ratio (95% CI) 0.40 (0.17-0.93) NR 0.40 (0.17-0.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Hazard ratio      | o (95% CI)                                | 0.40 (0.17-0.93) | NR                | 0.40 (0.17-0.93)  |  |  |
| Non-HbSS Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Non-HbSS (        | Genotype                                  |                  |                   |                   |  |  |
| Hazard ratio (95% CI) 0.30 (0.11-0.81) NR 0.30 (0.11-0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Hazard ratio      | o (95% CI)                                | 0.30 (0.11-0.81) | NR                | 0.30 (0.11-0.81)  |  |  |

CI: confidence interval, Criz: crizanlizumab, HU: hydroxyurea, IQR: interquartile range, ITT: intent-to-treat, NR: not reported, PP: per-protocol

<sup>\*</sup>language taken directly from trial

<sup>\*\*</sup>abstract only reports on patients with no acute pain crises during treatment

Table D5. Key Safety Events in SUSTAIN{Ataga, 2017, 1001; Kutlar, 2019, 1011}

| Study                               |                        |                | Ataga 2017 + Kultar 2019 |                |  |  |
|-------------------------------------|------------------------|----------------|--------------------------|----------------|--|--|
| Interventions                       |                        | High-Dose Criz | Low-Dose Criz            | Placebo        |  |  |
| N                                   |                        |                |                          |                |  |  |
| No. of patients with ≥1 Serious Adv | erse Events, n (%)     | 17 (26)        | 21 (33)                  | 17 (27)        |  |  |
| Treatment – Emergent Adverse        | 2-4 acute pain crises  | 313; 36 (87.8) | NR                       | 217; 34 (87.2) |  |  |
| Events,                             | 5-10 acute pain crises | 146; 21 (84.0) | NR                       | 141; 21 (91.3) |  |  |
| Number of events; n (%)             | HbSS Genotype          | 312; 39 (84.8) | NR                       | 255; 38 (86.4) |  |  |
|                                     | Non-HbSS Genotype      | 147; 18 (90.0) | NR                       | 103; 17 (94.4) |  |  |
|                                     | HU Use: Yes            | 242; 35 (85.4) | NR                       | 226; 35 (89.7) |  |  |
|                                     | HU Use: No             | 217; 22 (88.0) | NR                       | 132; 20 (87.0) |  |  |
| Adverse Events Leading to           | 2-4 acute pain crises  | 1; 1 (2.4)     | NR                       | 1; 1 (2.6)     |  |  |
| Discontinuation,                    | 5-10 acute pain crises | 1; 1 (4.0)     | NR                       | 6; 2 (8.7)     |  |  |
| Number of events; n (%)             | HbSS Genotype          | 1; 1 (2.2)     | NR                       | 6; 2 (4.5)     |  |  |
|                                     | Non-HbSS Genotype      | 1; 1 (5.0)     | NR                       | 1; 1 (5.6)     |  |  |
|                                     | HU Use: Yes            | 0; 0 (0.0)     | NR                       | 7; 3 (7.7)     |  |  |
|                                     | HU Use: No             | 2; 2 (8.0)     | NR                       | 0; 0 (0.0)     |  |  |
| Most Frequent Adverse Events, n (%  | 6)                     |                |                          |                |  |  |
| Pyrexia                             |                        | 2 (3)          | 0                        | 1 (2)          |  |  |
| Influenza                           |                        | 0              | 3 (5)                    | 0              |  |  |
| Pneumonia                           |                        | 3 (5)          | 2 (3)                    | 3 (5)          |  |  |
| Adverse Events, n (%)               |                        |                |                          |                |  |  |
| Headaches                           |                        | 11 (17)        | 14 (22)                  | 10 (16)        |  |  |
| Back Pain                           |                        | 10 (15)        | 13 (20)                  | 7 (11)         |  |  |
| Urinary Tract Infection             |                        | 9 (14)         | 7 (11)                   | 7 (11)         |  |  |
| Nausea                              |                        | 12 (18)        | 11 (17)                  | 7 (11)         |  |  |
| Arthralgia                          |                        | 12 (18)        | 9 (14)                   | 5 (8)          |  |  |
| Pain in Extremity                   |                        | 11 (17)        | 8 (12)                   | 10 (16)        |  |  |
| Upper respiratory tract infection   |                        | 7 (11)         | 7 (11)                   | 6 (10)         |  |  |

| Pyrexia              | 7 (11) | 6 (9)  | 4 (6)  |
|----------------------|--------|--------|--------|
| Diarrhea             | 7 (11) | 5 (8)  | 2 (3)  |
| Musculoskeletal Pain | 8 (12) | 4 (6)  | 6 (10) |
| Pruritus             | 5 (8)  | 7 (11) | 3 (5)  |
| Vomiting             | 5 (8)  | 7 (11) | 3 (5)  |
| Chest Pain           | 1 (2)  | 7 (11) | 1 (2)  |

Criz: crizanlizumab, HU: hydroxyurea, N: number

### **D7. Study Quality of Voxelotor HOPE Trial**

| Study          | Comparable | Adequate      | Patient  | Physician | Outcome      | Non-         | ITT      | Appropriate  | Overall |
|----------------|------------|---------------|----------|-----------|--------------|--------------|----------|--------------|---------|
|                | Groups     | Randomization | Blinding | Blinding  | Adjudication | Differential | Analysis | Handling of  | Quality |
|                |            |               |          |           | Blinding     | Follow-Up    |          | Missing Data |         |
| НОРЕ           | Yes        | Yes           | Yes      | Yes       | Not clear    | Yes          | Yes      | Yes          | Good    |
| Vichinsky 2019 |            |               |          |           |              |              |          |              |         |

ITT: intent-to-treat

Table D8. Study Design of Voxelotor Trials{Vichinsky, 2019, 1003}

| Study              | Voxelotor (HOPE)                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design             | Phase 3, double-blind, randomized, multi-center, placebo-controlled trial. Patients were randomized 1:1:1 to receive a once-daily high-dose (1500 mg) oral dose of voxelotor, low-dose (900 mg) of voxelotor, or placebo. Stratification factors included hydroxyurea use (yes or no), geographic region (North America, Europe, or other), and age (adolescent [12-17 years] or adults [18 to 65 years]). |
| Inclusion Criteria | <ul> <li>Ages 12-65 with confirmed sickle cell disease (homozygous hemoglobin S, sickle hemoglobin C disease, hemoglobin Sβ-thalassemia, or other genotypic variants of SCD)</li> <li>Hemoglobin level between 5.5 and 10.5 g/dl</li> <li>1-10 vaso-occlusive crises in past 12 months</li> <li>Participants receiving hydroxyurea at a stable dose (at least 3 months) were eligible</li> </ul>           |
| Exclusion Criteria | <ul> <li>Participants receiving regular red-cell transfusion therapy, had received transfusion in past 60 days, or had been hospitalized for<br/>vaso-occlusive crisis within 14 days before providing informed consent</li> </ul>                                                                                                                                                                         |
| N                  | 274                                                                                                                                                                                                                                                                                                                                                                                                        |
| Interventions      | <ul> <li>Voxelotor 1500 mg (n=90)</li> <li>Voxelotor 900 mg (n=92)</li> <li>Placebo (n=92)</li> </ul>                                                                                                                                                                                                                                                                                                      |
| Follow-up          | 28-35 day Screening Period, up to 72 week Treatment Period and End-of-trial visit at 4 weeks after last dose.                                                                                                                                                                                                                                                                                              |

**Outcomes** 

- Primary Endpoint: % participants with hemoglobin response
- Secondary Endpoints:
  - o Change in hemoglobin from BL to wk 24
  - Lab markers associated with hemolysis (indirect bilirubin level, absolute reticulocyte count, % reticulocytes, lactate dehydrogenase level)
  - o Annualized incidence rate of vaso-occlusive crisis

Table D9. Key Baseline Characteristics of Voxelotor trials{Vichinsky, 2019, 1003}

| Study                                          |                               | Vichinsky      | / 2019         |
|------------------------------------------------|-------------------------------|----------------|----------------|
| Interventions                                  |                               | High-Dose VOX  | Placebo        |
| N                                              | 90                            | 92             |                |
| Age, Median (Range)                            | 24                            | 28             |                |
| Female, n (%)                                  | 58 (64)                       | 50 (54)        |                |
|                                                |                               | 59 (66)        | 63 (68)        |
| Concomitant Hydroxyurea, n (%)                 | Yes                           | 58 (64)        | 58 (63)        |
|                                                | No                            | 32 (36)        | 34 (37)        |
| HbSS Genotype, n (%)                           | HbSS                          | 61 (68)        | 74 (80)        |
|                                                | HbSC                          | 3 (3)          | 2 (2)          |
|                                                | HbSβ0                         | 18 (20)        | 11 (12)        |
|                                                | HbSβ+                         | 7 (8)          | 3 (3)          |
|                                                | Other                         | 1 (1)          | 2 (2)          |
| Baseline hemoglobin level — g/dl M             | edian (range)                 | 8.7 (5.9-10.8) | 8.6 (6.1-10.5) |
| No. of vaso-occlusive crises in the            | 0                             | NR             | NR             |
| past 12 months N(%)                            | 1                             | 35 (39)        | 39 (42)        |
|                                                | 2-10                          | 55 (61)        | 53 (58)        |
| Hospitalizations due to painful crisis (range) | in the past 12 months, Median | NR             | NR             |

VOX: voxelotor, N: number, %: percent, g/dL: grams per deceliter

Table D10. Key Efficacy Outcomes in Voxelotor trials{Vichinsky, 2019, 1003;Vichinsky, 2019, 1095}

| Study                                          |                                                          | Vichinsky 2019      |                         |
|------------------------------------------------|----------------------------------------------------------|---------------------|-------------------------|
| Interventions                                  |                                                          | High-Dose VOX       | Placebo                 |
| N                                              |                                                          | 90                  | 92                      |
| Acute Pain Crisis                              | Median Rate per-person-<br>year<br>(95%CI)               | 2.77<br>(2.15-3.57) | 3.19<br>(2.50-<br>4.07) |
|                                                | % Difference P-Value                                     | NR                  | NR                      |
|                                                | No. of Patients with crisis rate of zero at end of trial | ≥1: 59(67)          | ≥1: 63<br>(69)          |
| 28-day Observation Po                          | eriod for Patients who Discon                            | ntinued VOX         |                         |
| N                                              |                                                          | 21                  | 17                      |
| Acute pain crises reported                     |                                                          | 6                   | 8                       |
| Number of patients reporting acute pain crises |                                                          | 5                   | 5                       |
| Incidence Rate                                 |                                                          | 4.63                | 7.01                    |
| Secondary and Tertiar                          | y Outcomes                                               |                     |                         |
| Acute Chest                                    | Median Rate/year (IQR)                                   | NR                  | NR                      |
| Syndrome                                       | % Difference; P-Value                                    | NR                  | NR                      |
| Splenic                                        | Median Rate/year (IQR)                                   | NR                  | NR                      |
| Sequestration                                  | % Difference; P-Value                                    | NR                  | NR                      |
| Annual Rate of                                 | Median Rate/year (IQR)                                   | NR                  | NR                      |
| Uncomplicated sickle-cell related pain crisis  | % Difference; P-Value                                    | NR                  | NR                      |
| Painful Sickle Cell                            | 0                                                        | NR                  | NR                      |
| Crisis (PSCC) %                                | 1                                                        | NR                  | NR                      |
|                                                | 2                                                        | NR                  | NR                      |
|                                                | 3                                                        | NR                  | NR                      |
| Hepatic                                        | Median Rate/year (IQR)                                   | NR                  | NR                      |
| Sequestration                                  | % Difference; P-value                                    | NR                  | NR                      |
| Priapism                                       | Median Rate/year (IQR)                                   | NR                  | NR                      |
|                                                | % Difference; P-value                                    | NR                  | NR                      |
| Hospitalization                                | Median Rate/year (IQR)                                   | NR                  | NR                      |
|                                                | % Difference ;P-Value                                    | NR                  | NR                      |
| <b>Brief Pain Inventory</b>                    | Mean Score Change                                        | NR                  | NR                      |

|                                    | Difference ; p-value  | NR                | NR       |
|------------------------------------|-----------------------|-------------------|----------|
| Time to First Sickle-              | Median time (IQR)     | NR                | NR       |
| Cell Related Pain                  | Hazard ratio (95% CI) | NR                | NR       |
| Crisis                             | P-Value               | NR                | NR       |
| The state Constant                 |                       |                   |          |
| Time to Second Sickle-Cell Related | Median time (IQR)     | NR                | NR       |
| Pain Crisis                        | Hazard ratio (95% CI) | NR                | NR       |
|                                    | P-Value               | NR                | NR       |
| Hemoglobin Response,               |                       | 46 (51)           | 6 (7)    |
| Absolute change in                 | No. of participants   | 88                | 91       |
| Hemoglobin (g/dL)                  | LS Mean (95% CI)      | 1.1 (0.9-1.4)     | -0.1 (-  |
|                                    |                       |                   | 0.3-0.2) |
| Indirect Bilirubin                 | No. of participants   | 85                | 85       |
|                                    | LS Mean (95% CI)      | -29.1             | -3.2     |
|                                    |                       | (-35.9 to -22.2)  | (-10.1   |
|                                    |                       |                   | to 3.8)  |
| Percentage of                      | No. of participants   | 88                | 91       |
| Reticulocytes                      | LS Mean (95% CI)      | -19.9             | 4.5      |
|                                    |                       | (-29.9 to - 10.9) | (-4.5 to |
|                                    |                       |                   | 13.6)    |
| Absolute                           | No. of participants   | 88                | 91       |
| Reticulocyte Count                 | LS Mean (95% CI)      | -8.0              | 3.1      |
|                                    |                       | (-18.1 to2.1)     | (-7.0 to |
|                                    | _                     |                   | 13.2)    |
| Lactate                            | No. of participants   | 88                | 97       |
| Dehydrogenase                      | LS Mean (95% CI)      | -4.5              | 3.4      |
|                                    |                       | (-11.9 to 2.8)    | (-4.0 to |
|                                    |                       |                   | 10.9)    |

IQR: interquartile range, CI: confidence interval, LS: least squares, VOX: voxelotor

Table D11. Subgroup Analyses of HOPE Trial (Howard, 2019, 1093; Ware, 2019, 1094)

| Study                            |                                                                           |    |    | Vichinsky 2019    |                  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------|----|----|-------------------|------------------|--|--|--|
|                                  |                                                                           |    |    | High Dose VOX     | Placebo          |  |  |  |
| Mean Percent Change in Hemolys   | Mean Percent Change in Hemolysis Markers by change in Hb at 24 weeks - PP |    |    |                   |                  |  |  |  |
| N                                |                                                                           | 74 | 76 |                   |                  |  |  |  |
| Absolute Reticulocyte            | Change in Hb >1g/ dL                                                      |    |    | -16.7             | NR               |  |  |  |
|                                  | Change in Hb ≤1 g/ dL                                                     |    |    | 1.5               | NR               |  |  |  |
| Percent of Reticulocytes         | Change in Hb >1g/ dL                                                      |    |    | -35.2             | NR               |  |  |  |
|                                  | Change in Hb ≤1 g/ dL                                                     |    |    | -3.6              | NR               |  |  |  |
| Indirect Bilirubin               | Change in Hb >1g/ dL                                                      |    |    | -37.0             | NR               |  |  |  |
|                                  | Change in Hb ≤1 g/ dL                                                     |    |    | -24.9             | NR               |  |  |  |
| LDH                              | Change in Hb >1g/ dL                                                      |    |    | -11.0             | NR               |  |  |  |
|                                  | Change in Hb ≤1 g/ dL                                                     |    |    | -1.1              | NR               |  |  |  |
| Mean Change (95% CI) in laborate | ory parameters from Baseline to Week 24                                   |    |    |                   |                  |  |  |  |
| Hb g/dL                          | Hydroxyurea Use - Yes                                                     |    |    | 1.3 (1.0, 1.6)    | 0.0 (-0.2 , 0.2) |  |  |  |
| (N=229)                          | Hydroxyurea Use - No                                                      |    |    | 1.3 (0.8, 1.8)    | 0.0 (-0.2, 0.3)  |  |  |  |
| HbF %                            | Hydroxyurea Use - Yes                                                     |    |    | -1.8 (-3.1, -0.5) | -0.1 (-1.8, 1.5) |  |  |  |
| (n=131)                          | Hydroxyurea Use - No                                                      |    |    | 0.2 (-0.9, 1.3)   | 0.5 (0.0, 1.1)   |  |  |  |

Hb: hemogloblin, HbF: fetal hemoblogin, g/dL: grams per decliliter, VOX: voxelotor, PP: per protocol, LDH: lactate dehydrogenase

Table D12. Key Safety Events in Voxelotor trials{Vichinsky, 2019, 1003; Howard, 2019, 1009}

| Study                                            | Vich          | insky 2019 | Howard 2019 |  |
|--------------------------------------------------|---------------|------------|-------------|--|
| Interventions                                    | High-Dose VOX | Placebo    | VOX 900mg   |  |
| N                                                | 90            | 92         | 7           |  |
| Serious Adverse Events, n (%)                    | 17 (19.3)     | 15 (16.5)  | 0 (0)       |  |
| Treatment -Emergent Adverse Events, n (%)        | 83 (94.3)     | 81 (89.0)  | 0 (0)       |  |
| Adverse Events Leading to Discontinuation, n (%) | 8 (9.1)       | 4 (4.4)    | 0 (0)       |  |
| Headaches, n(%)                                  | 23 (26)       | 20 (22)    | 2 (29)      |  |
| Back Pain, N(%)                                  | 10 (11)       | 10 (11)    | 2 (29)      |  |
| Urinary Tract Infection, N(%)                    | NR            | NR         | NR          |  |
| Nausea, n(%)                                     | 15 (17)       | 9 (10)     | NR          |  |
| Deaths, n (%)                                    | NR            | NR         | 0 (0)       |  |
| VOX: voxelotor, N: number                        |               |            |             |  |

Table D13. Study Quality of L-Glutamine{Niihara, 2018, 1006; Niihara, 2018, 1007; Niihara, 2014, 1007}

| Study        | Comparable<br>Groups | Adequate<br>Randomization | Patient<br>Blinding | Physician<br>Blinding | Outcome<br>Adjudication<br>Blinding | Non-<br>Differential<br>Follow-Up | ITT<br>Analysis | Appropriate<br>Handling of<br>Missing Data | Overall<br>Quality |
|--------------|----------------------|---------------------------|---------------------|-----------------------|-------------------------------------|-----------------------------------|-----------------|--------------------------------------------|--------------------|
| Niihara 2018 | Yes                  | Yes                       | Yes                 | Yes                   | Yes                                 | No                                | Yes             | No                                         | Fair               |
| Niihara 2014 | No                   | No                        | Yes                 | Yes                   | N/A                                 | No                                | Yes             | No                                         | Poor               |

ITT: intent-to-treat

Table D14. Study Design of the L-Glutamine Trials{Niihara, 2018, 1006;Niihara, 2014, 1013}

| Study              | L-Glutamine (Endari)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Niihara 2014                                                                                                                                                                                                                                                                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design             | Phase III, year-long, randomized, placebo-controlled, double-blind, parallel-group trial. Participants were randomized 2:1 to receive L-glutamine or placebo with randomization stratified by region of participating site and status with respect to hydroxyurea use.                                                                                                                                                                                                  | Phase II, randomized, double-blind, placebo-controlled, parallel-group, multicenter study. Participants were randomized 1:1 to oral L-glutamine at 0.3 grams per kilogram or oral placebo twice daily for 48 weeks                                                                                                                  |
| Inclusion Criteria | <ul> <li>Sickle cell anemia (homozygous hemoglobin S [HbSS]), or sickle cell thalassemia (HbSβ<sup>0</sup>-thalassemia)</li> <li>At least 5 years of age</li> <li>Had at least 2 pain crises (no upper limit) documented in the previous year</li> <li>Patients who were receiving treatment with hydroxyurea at a dose that had been stable or at least 3 months before screening and who intended to continue that treatment were eligible to participate.</li> </ul> | <ul> <li>Sickle cell anemia or sickle β0-thalassemia as documented by hemoglobin electrophoresis</li> <li>At least 5 years old</li> <li>At least 2 episodes of painful crises within 12 months of the screening visit</li> </ul>                                                                                                    |
| Exclusion Criteria | <ul> <li>Hospitalized for a reason not related to sickle cell disease within 2 months before screening</li> <li>Prothrombin-time international normalized ration higher than 2.0</li> <li>Serum albumin level ration higher than 3.0g</li> <li>Clinically significant renal or liver disease</li> <li>Had treatment with L-glutamine within 30 days before screening.</li> </ul>                                                                                        | <ul> <li>Significant medical condition that required hospitalization within 2 months of the screening visit</li> <li>Diabetes mellitus</li> <li>Treated with an experimental drug within 30 days of screening visit</li> </ul>                                                                                                      |
| N                  | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62                                                                                                                                                                                                                                                                                                                                  |
| Interventions      | <ul><li>L-Glutamine (N=152)</li><li>Placebo (N=78)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>L-Glutamine (N=33)</li><li>Placebo (N=29)</li></ul>                                                                                                                                                                                                                                                                         |
| Follow-up          | 48-week treatment period followed by a 3-week tapering period and an observation period of 2 weeks. Total trial duration of 53 weeks.                                                                                                                                                                                                                                                                                                                                   | 48-week treatment period with a 3-week tapering period. Final visit 2 weeks post final dose of study at week 53.                                                                                                                                                                                                                    |
| Outcomes           | <ul> <li>Primary Endpoint: Number of pain crises through week 48</li> <li>Secondary Endpoints:         <ul> <li>Number of hospitalizations for SC-related pain</li> <li>Number of ED visits</li> <li>Changes in hemoglobin measures</li> </ul> </li> </ul>                                                                                                                                                                                                              | <ul> <li>Primary Endpoint: frequency of painful sickle cell crises</li> <li>Secondary Endpoints: frequency of hospitalizatios for sickle cell pain, frequency of emergency room visits for sickle cell pain, number of days patients' usual daily activities were interrupted due to sickle cell pain, heigh and weight.</li> </ul> |

Table D15. Key Baseline Characteristics of L-Glutamine Trials{Niihara, 2014, 1013;Niihara, 2015, 1007;Niihara, 2018, 1006}

| Study                                                      |                   | Niihara 2018 NEMJ + Blood + 2015 |              | Niihara 2014 |              |
|------------------------------------------------------------|-------------------|----------------------------------|--------------|--------------|--------------|
| Interventions                                              |                   | L-Glutamine                      | Placebo      | L-Glutamine  | Placebo      |
| N                                                          |                   | 152                              | 78           | 33           | 29           |
| Age, Median (Range)                                        |                   | 19 (5 to 57)                     | 17 (5 to 58) | 29.0 (13-58) | 26.0 ( 9-55) |
| Age Group (Years)                                          | 5-12              | 34 (22.4)                        | 17 (21.8)    | 0.00         | 2 (6.9)      |
|                                                            | 13-18             | 41 (27)                          | 26 (33.3)    | 3 (9.1)      | 1 (3.4)      |
|                                                            | >18               | 77 (50.7)                        | 35 (44.9)    | 20 (91)      | 26 (89.6)    |
| Female, n (%)                                              |                   | 79 (52)                          | 45 (57.7)    | 22 (66.7)    | 10 (34.5)    |
| Black, n (%)                                               |                   | 144 (94.7)                       | 73 (93.6)    | 32 (97.0)    | 28 (6.6)     |
| Concomitant Hydroxyurea, n (%)                             | Yes               | 101 (66.4)                       | 52 (66.7)    | NR           | NR           |
|                                                            | No                | NR                               | NR           | NR           | NR           |
| HbSS Genotype, n (%)                                       | HbSS              | 136 (89.5)                       | 71 (91.0)    | 31 (93.9)    | 24 (82.8)    |
|                                                            | HbSC              | NR                               | NR           | NR           | NR           |
|                                                            | HbSβ <sup>0</sup> | 14 (9.2)                         | 7 (9.0)      | 2 (6.1)      | 5 (17.2)     |
|                                                            | HbSβ⁺             | 2 (1.3)                          | 0 (0)        |              |              |
|                                                            | Other             | NR                               | NR           | NR           | NR           |
| Sickle-Cell Related Pain crises in past 12 months, no. (%) | 0-1               | 1 (0.7)                          | 1 (1.3)      | NR           | NR           |
|                                                            | 2-5               | 128 (84.2)                       | 61 (78.2)    | NR           | NR           |
|                                                            | 6-9               | 15 (9.9)                         | 14 (17.9)    | NR           | NR           |
|                                                            | ≥ 10              | 8 (5.3)                          | 2 (2.6)      | NR           | NR           |

| Baseline hemoglobin level — g/dl Median (range)         | 8.8 ± 1.4  | 8.7 ± 1.2  | NR | NR |
|---------------------------------------------------------|------------|------------|----|----|
| Hematocrit level at baseline – g/dl                     | 27.7 ± 4.4 | 27.5 ± 3.6 | NR | NR |
| No. of vaso-occlusive crises in the past 12 months N(%) | NR         | NR         | NR | NR |

NR: not reported, g/dl: grams per deciliter, n: number

Table D16. Key Efficacy Outcomes in L-Glutamine Trials{Niihara, 2014, 1013;Niihara, 2015, 1007;Niihara, 2018, 1006;Niihara, 2018, 1007;Niihara, 2015, 1007}

| Study                                         |                        | Niihara 2018 NE | JM + Niihara 2018 | Niihara 2014 |         |
|-----------------------------------------------|------------------------|-----------------|-------------------|--------------|---------|
|                                               |                        |                 | liihara 2015      |              |         |
| Interventions                                 |                        | L-Glutamine     | Placebo           | L-GLutamine  | Placebo |
| N                                             |                        | 152             | 78                | 33           | 29      |
| Acute Pain Crisis                             | Median (range)         | 3 (0-15)        | 4 (0-15)          | NR           | NR      |
|                                               | % Difference P-Value   | NR; P           | =0.005            | NR           | NR      |
| Acute Chest Syndrome                          | No. of episodes n(%)   |                 |                   |              |         |
|                                               | 0                      | 139 (91.4)      | 60 (76.9)         | NR           | NR      |
|                                               | ≥1                     | 13 (8.6)        | 18 (23.1)         | NR           | NR      |
|                                               | 1                      | 10 (6.6)        | 13 (16.7)         | NR           | NR      |
|                                               | 2                      | 3 (2.0)         | 4 (5.1)           | NR           | NR      |
|                                               | 3                      | 0 (0)           | 1 (1.3)           | NR           | NR      |
|                                               | % Difference; P-Value  | NR; P           | =0.003            | NR           | NR      |
| Splenic Sequestration                         | Median Rate/year (IQR) | NR              | NR                | NR           | NR      |
|                                               | % Difference; P-Value  | NR              | NR                | NR           | NR      |
| Annual Rate of                                | Median Rate/year (IQR) | NR              | NR                | NR           | NR      |
| Uncomplicated sickle-cell related pain crisis | % Difference; P-Value  | NR              | NR                | NR           | NR      |
| Painful Sickle Cell Crisis                    | 0                      | 24%             | 10%               | NR           | NR      |
| (PSCC)                                        | 1                      | 6%              | 8%                | NR           | NR      |
|                                               | 2                      | 36              | 35%               | NR           | NR      |

|                              | 3                          | 34%          | 47%      | NR         | NR           |  |  |
|------------------------------|----------------------------|--------------|----------|------------|--------------|--|--|
|                              | Week 24                    | <b>3</b> 178 | ,        |            |              |  |  |
|                              | Mean number of Events      | NR           | NR       | 2.5 (2.55) | 5.5 (8.46)   |  |  |
|                              | (SD)<br>P-Value            |              | NR       | 0.0        | 060          |  |  |
|                              | Week 48                    | '            | · · ·    | 0.0        | 300          |  |  |
|                              | Mean number of events (SD) | NR           | NR       | 4.5 (5.37) | 10.8 (18.74) |  |  |
|                              | P-Value                    | 1            | NR       | 0.0        | 076          |  |  |
| Hepatic Sequestration        | Median Rate/year (IQR)     | NR           | NR       | NR         | NR           |  |  |
|                              | % Difference; P-value      | NR           | NR       | NR         | NR           |  |  |
| Priapism                     | Median Rate/year (IQR)     | NR           | NR       | NR         | NR           |  |  |
|                              | % Difference; P-value      | NR           | NR       | NR         | NR           |  |  |
| No. of hospitalization for   | Median (range)             | 2 (0-14)     | 3 (0-13) | NR         | NR           |  |  |
| sickle cell-related pain     | % Difference ;P-Value      | NR; P=0.005  |          | NR         |              |  |  |
|                              | Week 24                    |              |          |            |              |  |  |
|                              | Mean                       | NR           | NR       | 0.8        | 1.3          |  |  |
|                              | P-Value                    | 1            | NR       | 0.0        | 036          |  |  |
|                              | Week 48                    |              |          |            |              |  |  |
|                              | Mean                       | NR           | NR       | 1.5        | 2.3          |  |  |
|                              | P-Value                    | 1            | NR       | 0.0        | 072          |  |  |
| No. of Emergency             | Median (range)             | 1 (0-12)     | 1 (0-15) | NR         | NR           |  |  |
| department visits for sickle | P-Value                    | 0            | .09      | N          | JR .         |  |  |
| cell related pain            | Week 24                    |              |          |            |              |  |  |
|                              | Mean                       | NR           | NR       | 3.7        | 9.4          |  |  |
|                              | P-Value                    | NR 0.105     |          |            |              |  |  |
|                              | Week 48                    |              |          |            |              |  |  |
|                              | Mean                       | NR           | NR       | 1.9        | 4.7          |  |  |
|                              | P-Value                    | 1            | NR       | 0.:        | 129          |  |  |
|                              |                            |              |          |            |              |  |  |

| Cumulative no. of days in                        | Median (range)        | 6.5 (0-94) | 11 (0-187) | NR | NR |
|--------------------------------------------------|-----------------------|------------|------------|----|----|
| hospital                                         | P-Value               | 0          | .02        | NR | NR |
| Brief Pain Inventory                             | Mean Score Change     | NR         | NR         | NR | NR |
|                                                  | Difference; p-value   | NR         | NR         | NR | NR |
| Time to First Sickle-Cell<br>Related Pain Crisis | Median time (IQR)     | 84 (NR)    | 54 (NR)    | NR | NR |
| Related Falli Clisis                             | Hazard ratio (95% CI) | 0.69 (0    | .52-0.93)  | NR | NR |
|                                                  | P-Value               | 0          | .02        | NR | NR |
| Time to Second Sickle-Cell Related Pain Crisis   | Median time (IQR)     | 212 (NR)   | 133 (NR)   | NR | NR |
| Related Palli Crisis                             | Hazard ratio (95% CI) | 0.68 (0    | .49-0.96)  | NR | NR |
|                                                  | P-Value               | 0          | .03        | NR | NR |
| Mean Corpuscular Volume (N                       | лсу)                  |            |            |    |    |
| Not receiving hydroxyurea                        | Mean (SD)             | 94.9       | (10.2)     | NR | NR |
| Receiving Hydroxyurea                            | Mean (SD)             | 104.0      | (13.9)     | NR | NR |
| NADH (mmol/ml RBC)                               | Mean ± SD (range)     | NR         | NR         | NR | NR |
|                                                  | P-value               | NR         | NR         | NR | NR |
| Total NAD (mmol/ml RBC)                          | Mean ± SD (range)     | NR         | NR         | NR | NR |
|                                                  | P-value               | NR         | NR         | NR | NR |
| Redox Potential (%)                              | Mean ± SD (range)     | NR         | NR         | NR | NR |
|                                                  | P-value               | NR         | NR         | NR | NR |
| Hemoglobin (g/dL)                                | Mean ± SD (range)     | NR         | NR         | NR | NR |
|                                                  | P-value               | NR         | NR         | NR | NR |
| <b>Subjective Clinical Response</b>              |                       |            |            |    |    |
| Energy Level                                     | Increased             | NR         | NR         | NR | NR |
|                                                  | Decreased             | NR         | NR         | NR | NR |
|                                                  | No Change             | NR         | NR         | NR | NR |
| Activity Level                                   | Increased             | NR         | NR         | NR | NR |
|                                                  | Decreased             | NR         | NR         | NR | NR |
|                                                  | No Change             | NR         | NR         | NR | NR |
| Chronic Pain Level                               | Increased             | NR         | NR         | NR | NR |
|                                                  | Decreased             | NR         | NR         | NR | NR |
|                                                  | No Change             | NR         | NR         | NR | NR |

| Narcotics Dosage | Increased | NR | NR | NR | NR |
|------------------|-----------|----|----|----|----|
|                  | Decreased | NR | NR | NR | NR |
|                  | No Change | NR | NR | NR | NR |

Table D17. Key Safety Events in L-Glutamine Trials (Niihara, 2014, 1013; Niihara, 2018, 1006)

| Study                                              | Niihara 2018 |           | Niihar      | a 2014     |
|----------------------------------------------------|--------------|-----------|-------------|------------|
| Interventions                                      | L-Glutamine  | Placebo   | L-Glutamine | Placebo    |
| N                                                  | 152          | 78        | 37          | 33         |
| Adverse Events (%)                                 | 98%          | 100%      | 94.6%       | 90.9%      |
| Serious Adverse Events, n (%)                      | 78.2%        | 87.1%     | 64.7%       | 63.6%      |
| Sickle Cell Crisis (%)                             | NR           | NR        | 59.5%       | 51.5%      |
| Treatment - Emergent Adverse Events, n (%)         | NR           | NR        | NR (8.1%)   | NR (9.1%)  |
| Adverse Events Leading to Discontinuation, n (%)   | NR           | NR        | 19 (51.4%)  | 21 (63.6%) |
| Cardiac Disorders                                  |              |           |             |            |
| Tachycardia                                        | 8 (5.3)      | 4 (5.1)   | NR          | NR         |
| Gastrointestinal Disorders                         |              |           |             |            |
| Constipation                                       | 38 (25.2)    | 19 (24.4) | NR          | NR         |
| Nausea                                             | 34 (22.5)    | 13 (16.7) | NR          | NR         |
| Vomiting                                           | 22 (14.6)    | 10 (12.8) | NR          | NR         |
| Abdominal pain upper                               | 16 (10.6)    | 6 (7.7)   | NR          | NR         |
| Diarrhea                                           | 12 (7.9)     | 5 (6.4)   | NR          | NR         |
| Gastroenteritis                                    | NR           | NR        | 5%          | 15%        |
| General Disorders and administration site conditio | ns           |           |             |            |
| Chest Pain (noncardiac)                            | 21 (13.9)    | 7 (9.0)   | NR          | NR         |
| Fatigue                                            | 9 (6.0)      | 1 (1.3)   | NR          | NR         |
| Infections and Infestations                        |              |           |             |            |
| Urinary Tract Infection                            | 10 (6.6)     | 3 (3.8)   | NR          | NR         |
| Musculoskeletal and connective tissue disorders    |              |           |             |            |
| Pain in Extremity                                  | 24 (15.9)    | 6 (7.7)   | NR          | NR         |
| Back Pain                                          | 20 (13.2)    | 5 (6.4)   | NR          | NR         |
| Arthralgia                                         | NR           | NR        | 5%          | 21%        |

| Nervous System Disorders                                    |           |           |    |    |  |
|-------------------------------------------------------------|-----------|-----------|----|----|--|
| Headache                                                    | 32 (21.2) | 14 (17.9) | NR | NR |  |
| Dizziness                                                   | 8 (5.3)   | 4 (5.1)   | NR | NR |  |
| Respiratory, Thoracic, and Mediastinal disorders            |           |           |    |    |  |
| Nasal Congestion                                            | 11 (7.3)  | 5 (6.4)   | NR | NR |  |
| NR: not reported.<br>Niihara 1998 saw no adverse reactions. |           |           |    |    |  |

**Table D18. Unpublished L-Glutamine Studies** 

| Unpublished L-Glutamine Studies{Food and Drug Administration. Center for Drug Evaluation and Research, 2019, 23}                                            |                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                         |                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Title / Trial Sponsor                                                                                                                                       | Study Design                                                                                                                                                                            | Study Arms                                                                                                          | Patient Population                                                                                                                                                                                                                                                                                 | Primary Outcomes                                       | Results                                                                                                                                                                                                                 | Completion Dates |  |
| L-Glutamine L-Glutamine                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                         |                  |  |
| for Sickle Cell Anemia  NCT00586209  Sponsor: Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center Collaborator: Emmaus Medical Inc. | Prospective Phase II, Randomized, Double-Blind, Placebo- Controlled, Parallel-Group Assignment  Enrollment: 15  4-week screening period 12-week treatment period 5 week tapering period | Intervention: Weight-based L- Glutamine with upper limit of daily dose at 30g/day (n=5)  Comparator: Placebo (n=10) | Inclusion:  1. Subjects (≥18 years of age) with sickle cell anemia or sickle β0- thalassemia.  2. At least two episodes of painful crises within 12 months of screening  Exclusion:  1. Significant medical condition requiring hospitalization within 2 months of screening  2. Diabetes mellitus | 1. Number of occurrences of painful sickle cell crises | Adverse Events n (%) L-Glutamine: 4 (80) Placebo: 7 (70)  Serious Adverse Events n (%) L-Glutamine: 2 (40) Placebo: 5 (50)  Diarrhea L-Glutamine: 2 (40) Placebo: NR  Nausea / Vomiting L-Glutamine: 2 (40) Placebo: NR | November 2009    |  |

| Title / Trial Sponsor | Study Design                                                                                                                                                                     | Study Arms                                                              | Patient Population                                                                                                                                                                                     | Primary Outcomes                                                                                                                                                                                         | Results                                                                                                                                                                                   | Completion Dates |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                       |                                                                                                                                                                                  |                                                                         | fasting blood sugar<br>>115 mg/dL                                                                                                                                                                      |                                                                                                                                                                                                          | L-Glutamine: 1 (20) Placebo: NR  Hypertension L-Glutamine: 1 (20) Placebo: NR                                                                                                             |                  |
| Legacy Study 8775     | Phase 2a, Randomized, Single-Center, Double-Blind, Placebo- Controlled Crossover  Enrollment: 24  24-week treatment period followed by 5 week tapering period prior to crossover | Intervention: Oral L-Glutamine 30g/day (10 g, TID)  Comparator: Placebo | Inclusion:  1. Subjects (≥18 years of age) with a diagnosis of sickle cell anemia 2. At least 3 episodes of painful crises during the 12 month period prior to randomization  Exclusion: None Reported | 1. Total NAD 2. NAD redox potential 3. RBC endothelial cell adhesiveness 4. Hematologic parameters 5. Frequency of painful crises 6. Number of hospitalization day 7. Number of painless days 8. Safety. | Of the 6 evaluable patients, there was a significant increase in number of pain days (p=0.00885). The improvement in number of painful crises was not statistically significant (p=0.28). | Unknown          |

# **Outcomes of Interest**

| Clinical Outcomes               |                             |  |  |  |
|---------------------------------|-----------------------------|--|--|--|
| Acute                           | Chronic                     |  |  |  |
| Acute Pain Episode              | Chronic Pain                |  |  |  |
| Stroke/Cerebrovascular Accident | Fatigue                     |  |  |  |
| Retinal Infarct                 | Anxiety                     |  |  |  |
| Septicemia                      | Depression                  |  |  |  |
| Acute Chest Syndrome            | Neurocognitive Dysfunction  |  |  |  |
| Pneumonia                       | Retinopathy                 |  |  |  |
| Splenic Sequestration           | Opioid Dependence/Tolerance |  |  |  |
| Splenic Infarct                 | Cardiomyopathy              |  |  |  |
| Sickle Cell Nephropathy         | Diastolic Heart Failure     |  |  |  |
| Acute Kidney Injury             | Pulmonary Hypertension      |  |  |  |
| Pregnancy Complications         | Anemia                      |  |  |  |
| Priapism                        | Erectile Dysfunction        |  |  |  |
| Gallstones                      | Chronic Kidney Disease      |  |  |  |
| Osteomyelitis                   | Skin Ulcer                  |  |  |  |
| Bone Marrow Infarction          | Avascular Necrosis          |  |  |  |
|                                 | Hearing Loss                |  |  |  |

| Bi                        | iomarkers/Surrogate Endpoints |
|---------------------------|-------------------------------|
| Hemoglobin (Hb) Level     |                               |
| Fetal Hb Level            |                               |
| Hematocrit                |                               |
| Oxygen percent saturation |                               |

| Mortality                |
|--------------------------|
| Cause-specific mortality |
| All-cause mortality      |
| Survival                 |

| Functional Outcomes/Health Related Quality of Life |  |  |  |  |
|----------------------------------------------------|--|--|--|--|
| Cognitive Function                                 |  |  |  |  |
| Physical Function                                  |  |  |  |  |
| Health-related quality of life                     |  |  |  |  |
| Missed days at school/work                         |  |  |  |  |
| Ability to return to usual activities              |  |  |  |  |
| Patient satisfaction with treatment                |  |  |  |  |

| Health Resource Utilization |
|-----------------------------|
| Emergency department visits |
| Acute/ urgent care visits   |
| Hospitalization             |
| ICU Admission               |
| Length of hospital stay     |
| Need for blood transfusion  |

# <u>Appendix E. Comparative Value Supplemental</u> <u>Information</u>

**Table E1. Impact Inventory** 

| Sector                   | Type of Impact                         | Included in This Analysis from Perspective? |          | Notes on Sources (if quantified),     |  |  |
|--------------------------|----------------------------------------|---------------------------------------------|----------|---------------------------------------|--|--|
|                          | (Add additional domains, as relevant)  | Health<br>Care<br>Sector                    | Societal | Likely Magnitude<br>& Impact (if not) |  |  |
| Formal Health (          | Care Sector                            |                                             |          |                                       |  |  |
|                          | Longevity effects                      | Х                                           | X        |                                       |  |  |
| Health outcomes          | Health-related quality of life effects | Х                                           | Х        |                                       |  |  |
|                          | Adverse events                         | X                                           | X        |                                       |  |  |
|                          | Paid by third-party payers             | Х                                           | X        |                                       |  |  |
| Medical costs            | Paid by patients out-of-pocket         |                                             |          |                                       |  |  |
|                          | Future related medical costs           |                                             |          |                                       |  |  |
|                          | Future unrelated medical costs         |                                             |          |                                       |  |  |
| Informal Health          | Care Sector                            |                                             |          |                                       |  |  |
|                          | Patient time costs                     | NA                                          |          |                                       |  |  |
| Health-<br>related costs | Unpaid caregiver-time costs            | NA                                          |          |                                       |  |  |
|                          | Transportation costs                   | NA                                          |          |                                       |  |  |
| Non-Health Car           | Non-Health Care Sectors                |                                             |          |                                       |  |  |
| Productivity             | Labor market earnings lost             | NA                                          | X        |                                       |  |  |

|                        | Cost of unpaid lost productivity due to illness                 | NA | X |  |
|------------------------|-----------------------------------------------------------------|----|---|--|
|                        | Cost of uncompensated household production                      | NA |   |  |
| Consumption            | Future consumption unrelated to health                          | NA |   |  |
| Social services        | Cost of social services as part of intervention                 | NA |   |  |
| Legal/Criminal justice | Number of crimes related to intervention                        | NA |   |  |
|                        | Cost of crimes related to intervention                          | NA |   |  |
| Education              | Impact of intervention on educational achievement of population | NA |   |  |
| Housing                | Cost of home improvements, remediation                          | NA |   |  |
| Environment            | Production of toxic waste pollution by intervention             | NA |   |  |
| Other                  | Other impacts (if relevant)                                     | NA |   |  |

NA: not applicable

Adapted from Sanders et al.

#### **Description of evLYG Calculations**

The cost per evLYG considers any extension of life at the same "weight" no matter what treatment is being evaluated. Below are the stepwise calculations used to derive the evLYG.

- 1. First, we attribute a utility of 0.851, the age- and gender-adjusted utility of the general population in the US that are considered healthy. (Pickard, 2019, 5001)
- 2. For each cycle (Cycle I) in the model where using the intervention results in additional years of life gained, we multiply this general population utility with the additional life years gained  $(\Delta LYG)$ .
- 3. We sum the product of the life years and average utility (cumulative LYs/cumulative QALYs) for Cycle I in the comparator arm with the value derived in Step 2 to derive the equal value of life years (evLY) for that cycle.
- 4. If no life years were gained using the intervention versus the comparator, we use the conventional utility estimate for that Cycle I.
- 5. The total evLY is then calculated as the cumulative sum of QALYs gained using the above calculations for each arm.
- 6. We use the same calculations in the comparator arm to derive its evLY.

Finally, the evLYG is the incremental difference in evLY between the intervention and the comparator arms.

Table E2. Age-specific Annual Probability of Death

| Age   | Percent that die at each age | Probability<br>of Death | Probability of<br>Death<br>(Annual) | Adjusted by<br>Risk Factors |
|-------|------------------------------|-------------------------|-------------------------------------|-----------------------------|
| <1    | 1.5%                         | 0.0150                  | 0.0150                              | 0.0013                      |
| 1-4   | 2%                           | 0.0203                  | 0.0051                              | 0.0004                      |
| 5-9   | 1.5%                         | 0.0155                  | 0.0031                              | 0.0003                      |
| 10-14 | 1.5%                         | 0.0158                  | 0.0032                              | 0.0003                      |

| 15-19 | 4%   | 0.0428 | 0.0087 | 0.0007 |
|-------|------|--------|--------|--------|
| 20-24 | 8%   | 0.0894 | 0.0186 | 0.0016 |
| 25-34 | 20%  | 0.2454 | 0.0278 | 0.0023 |
| 35-44 | 27%  | 0.4390 | 0.0562 | 0.0047 |
| 45-54 | 20%  | 0.5797 | 0.0830 | 0.0070 |
| 55-64 | 11%  | 0.7586 | 0.1325 | 0.0111 |
| 65-74 | 2%   | 0.5714 | 0.0812 | 0.0068 |
| 75-84 | 1.5% | 1.0000 | 0.9688 | 0.0812 |

Table E3. Undiscounted Results for the Base Case for Crizanlizumab versus Optimal Usual Care Alone

| Treatment         | Usual Care  | Crizanlizumab | Difference  | ICER         |                               |
|-------------------|-------------|---------------|-------------|--------------|-------------------------------|
| Treatment Cost    | -           | \$1,695,927   | \$1,695,927 | •            |                               |
| Other Costs       | \$1,633,664 | \$1,552,076   | -\$81,587   | +            |                               |
| Total Cost        | \$1,633,664 | \$3,248,003   | \$1,614,339 | -            |                               |
| Acute Pain Crises | 63.23       | 42.67         | -20.56      | \$78,530     | per acute pain crisis avoided |
| Hemoglobin (g/dL) | 0.00        | 0.00          | 0.00        | Dominated    |                               |
| Lys               | 21.08       | 26.01         | 4.93        | \$210,087    | per LY gained                 |
| evLYG             | 10.60       | 14.54         | 3.94        | \$262,924.49 | per evLY gained               |
| QALYs             | 10.60       | 12.31         | 1.71        | \$604,601    | per QALY gained               |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

Table E4. Undiscounted Results for the Base Case for Voxelotor versus Optimal Usual Care Alone

| Treatment         | Usual Care  | Voxelotor   | Difference  | ICER        |                               |
|-------------------|-------------|-------------|-------------|-------------|-------------------------------|
| Treatment Cost    | -           | \$1,859,194 | \$1,859,194 | -           |                               |
| Other Cost        | \$1,209,430 | \$1,826,809 | \$617,379   | -           |                               |
| Total Cost        | \$1,209,430 | \$3,686,003 | \$2,476,573 | -           |                               |
| Acute Pain Crises | 63.23       | 64.90       | 1.67        | \$1,175,812 | per acute pain crisis avoided |
| Hemoglobin (g/dL) | -0.10       | 1.10        | 1.20        | \$80,634    | per g/dL per year             |
| Lys               | 21.08       | 25.59       | 4.52        | \$279,848   | per LY gained                 |
| evLYG             | 10.60       | 14.44       | 3.85        | \$328,816   | per evLY gained               |
| QALYs             | 10.60       | 12.54       | 1.94        | \$652,308   | per QALY gained               |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

Table E5. Undiscounted Results for the Base Case for L-glutamine versus Optimal Usual Care Alone

| Treatment         | Usual Care  | L-<br>glutamine | Difference | ICER        |                               |
|-------------------|-------------|-----------------|------------|-------------|-------------------------------|
| Treatment Cost    | -           | \$420,255       | \$420,255  | -           |                               |
| Other Costs       | \$1,144,760 | \$1,002,983     | -\$141,777 | -           |                               |
| Total Cost        | \$1,144,760 | \$1,423,237     | \$278,478  | -           |                               |
| Acute Pain Crises | 63.23       | 59.09           | -4.14      | \$96,119    | per acute pain crisis avoided |
| Hemoglobin (g/dL) | 0.00        | 0.00            | 0.00       | Dominated   |                               |
| LYs               | 21.08       | 21.65           | 0.57       | \$488,441   | per LY gained                 |
| evLYG             | 10.60       | 11.02           | 0.42       | \$662,503   | per evLY gained               |
| QALYs             | 10.60       | 10.79           | 0.19       | \$1,446,810 | per QALY gained               |

evLY: equal value life year, evLYG: equal value life years gained, g/dL: grams per deciliter, ICER: incremental cost-effectiveness ratio, LY: life year, QALY: quality-adjusted life year

#### **Description of Competing Events Calculations**

To simplify the model it was assumed that only one chronic condition and one acute condition could occur each cycle. This creates a situation where chronic conditions and acute conditions become competing events. Therefore, by decreasing one event in the model it allows other events to occur more frequently. To correct for the competing events, the model was calibrated to minimize the difference in the number of acute events and chronic conditions because of the reduction in acute pain crises in the treatment arm. Specifically, the steps were to:

- 1. Remove the risks of acute pain crisis from the model, i.e., make all risk factors of acute pain crisis equal to 1
- 2. Run the model with the treatment effect as reported in the appropriate trial
- 3. Calculate adjustment factors that minimize the difference in each acute and chronic condition other than acute pain crisis, since treatment effects should only affect acute pain crisis without the risk factors applied; there was a small effect due to competing events
- 4. Add the risks of acute pain crisis on the other acute and chronic conditions back into the model
- 5. Calculate results of the model.

This method can be validated by investigating how the model predicts acute and chronic conditions compared to known SCD populations, as was done in the validation section above.

# Appendix F. Real World Evidence Final Protocol

# AETION.

| Acronym/Title             | ICER sickle cell disease (SCD) model inputs                                                                  |
|---------------------------|--------------------------------------------------------------------------------------------------------------|
| Protocol version and date | V 1.0, 15 January 2020                                                                                       |
| Study type / Study phase  | Observational study                                                                                          |
| Study Investigator        | Brigham Women's Hospital                                                                                     |
|                           | Principle Investigator: Sebastian Schneeweiss, MD, ScD                                                       |
| Country(-ies) of study    | United States                                                                                                |
| Protocol Author(s)        | Collaboration between Aetion, Inc., Brigham Women's Hospital, and Institute for Clinical and Economic Review |

The study will be conducted in compliance with the protocol

and any applicable regulatory requirements.

Throughout this document, symbols indicating proprietary names (\*), TM) may not be displayed. Hence, the appearance of product names without these symbols does not imply that these names are not protected.

# 1. Table of contents

Table of contents

156

1.

| 2.      | List of abbreviations 157                                                        |   |
|---------|----------------------------------------------------------------------------------|---|
| 3.      | Rationale and background 158                                                     |   |
| 4.      | Research questions and objectives 158                                            |   |
| 5.      | Research methods 158                                                             |   |
| 5.1.1   | Study population 158                                                             |   |
| 5.1.1.1 | Cohort subset 1 (analysis of acute event costs)159                               |   |
| 5.1.1.2 | Cohort subset 2 (analysis of chronic event costs) 159                            |   |
| 5.2     | Variables 160                                                                    |   |
| 5.2.1   | Patient characteristics 160                                                      |   |
| 5.2.2   | Treatment 160                                                                    |   |
| 5.2.3   | Outcomes definition 161                                                          |   |
| 5.2.3.1 | Acute outcomes for rate estimates 161                                            |   |
| 5.2.3.2 | Chronic outcomes (first recorded following cohort entry) for rate estimates 16:  | 1 |
| 5.2.3.3 | Acute outcomes for cost estimates 161                                            |   |
| 5.3     | Data sources 162                                                                 |   |
| 5.3.1   | IBM Truven MarketScan 162                                                        |   |
| 5.3.2   | General notes on administrative databases 162                                    |   |
| 5.4     | Statistical analysis 163                                                         |   |
| 5.4.1   | Rate of acute outcomes 163                                                       |   |
| 5.4.2   | Rates of chronic outcomes (first recorded occurrence following cohort entry) 163 | 3 |

- 5.4.3 Incidence of chronic outcome 163
- 5.4.4 Rates of treatment (following cohort entry) 164
- 5.4.5 Costs of acute events 164
- 5.4.6 Costs of chronic events165
- 5.4.7 Subgroup analysis 166
- 5.4.7.1 Rates of acute and chronic outcomes, incidence of chronic outcomes, and rates of treatment 166 stratified by age
- 5.4.7.2 Cost of acute events analysis stratified by age 166
- 5.4.8 Software 167
- 6. References 167
- Annex 1: Variable definitions 168
- Annex 2: Software Components 189
- Annex 3: Annex References 192

#### 2. List of abbreviations

- AEP Aetion Evidence Platform®
- CCAE Commercial Claims and Encounters
- CKD Chronic kidney disease
- COB Coordination of Benefits
- ER Emergency room
- HbC hemoglobin C
- HbSS homozygous sickle hemoglobin
- **ICER** Institute of Clinical and Economic Review

IQR Interquartile range

MDCR MarketScan Medicare Supplemental and Coordination of Benefits Database

OLS Ordinary least squares

SCD Sickle cell disease

SD Standard deviation

# 3. Rationale and background

A series of analyses using the Aetion Evidence Platform® (AEP) were conducted within a Marketscan dataset to obtain evidence on the characteristics of commercially-insured patients with sickle cell disease (SCD), rates of treatment, rates acute and chronic outcomes, and the costs associated with these outcomes. Results from this analysis were used to inform the Institute for Clinical and Economic Review (ICER) cost-effectiveness model.

# 4. Research questions and objectives

The objectives of this study are:

To characterize patients with SCD. Specifically,

- To describe baseline patient characteristics including demographics
- To describe rates of acute and chronic clinical outcomes of interest
- To estimate the incidence of chronic outcomes of interest
- To describe rates of treatment, including bone marrow transplant, use of hydroxyurea, and chronic transfusion
- To estimate costs of acute and chronic events of interest

#### **5.** Research methods

# 5.1.1 Study population

The study population was derived from patients with SCD. Patients entered the cohort on their first diagnosis of SCD within all available data (2002 - 2017). The population was restricted to patients with three or more SCD diagnoses during available data (see appendix for further detail), implemented by requiring two additional diagnoses following cohort entry.

As noted below, subsets of this overall SCD population were evaluated for the cost analyses.

# 5.1.1.1 Cohort subset 1 (analysis of acute event costs)

For each acute event of interest, a cohort of patients with SCD and with the event between January 01, 2014 and December 01, 2017 was identified. Only these later years of data (2014 – 2017) were used to obtain more recent and relevant cost estimates. Patients entered the cohort on the acute event date. Only patients with an incident acute event were included; those patients with an event in the 180 days prior to the cohort entry date were excluded. Each patient was included only once, on the first qualifying event.

Patients were required to have at least 30 days of enrollment prior to cohort entry in order to obtain baseline cost estimates. The event-based cohorts were nested within the broader population of patients meeting the sickle cell disease definition.

# 5.1.1.2 Cohort subset 2 (analysis of chronic event costs)

For each chronic event of interest, patients were identified from within a parent population of patients with an SCD diagnosis between January 2014 and December 2016 and at least three diagnoses total during available follow-up. Subjects included patients who were newly diagnosed with the chronic condition and a risk-set sampled referent group, identified during January 01, 2014 and December 31, 2016.

Patients with chronic conditions were required to be newly-diagnosed with the chronic condition, having no diagnoses in the 180 days prior to the cohort entry date. While this focus on incident patients may have reduced the generalizability, it allowed for clearer temporality between chronic condition status and cost and more valid estimates.

For each patient with the chronic condition, up to three referent patients were risk-set sampled from a pool of potential patients who did not have the chronic condition on the exposed patient's cohort entry date and met the same enrollment, inclusion and exclusion criteria. Risk-set sampled referent patients were assigned the same cohort entry date as the patient with the chronic condition.

Patients were not allowed to be sampled for the referent group if they had the chronic condition on the potential cohort entry date or in the 180 days prior to the potential cohort entry date. In addition, patients were only eligible to be sampled as referent on days they had a prescription, outpatient visit or inpatient visit to ensure they were similar in terms of being engaged with the healthcare system.

#### 5.2 Variables

Refer to **Annex 1: Variable definitions** for the definitions of patient characteristics including SCD, study treatment, and outcome events of interest.

#### **5.2.1** Patient characteristics

The following patient characteristics were evaluated on each patient's cohort entry date:

- Age
- Gender
- Geographic region
- Age category (< 2, 2 4, 5 12, 13 18, 18+)
- Age category (<18, 18+)
- Medicare coverage
- The presence of specific SCD diagnosis codes were evaluated over all available data for each patient.
- Sickle cell hemoglobin C (HbC)
- Sickle cell homozygous sickle hemoglobin (HbSS)
- Sickle cell thalassemia
- Sickle cell disease other

#### 5.2.2 Treatment

Treatments of interest were:

- Bone marrow transplant
- Use of hydroxyurea
- Chronic transfusion

The hydroxyurea analysis was restricted to patients with complete prescription information.

#### 5.2.3 **Outcomes definition**

The following study outcomes are defined below.

#### 5.2.3.1 Acute outcomes for rate estimates

#### Acute outcomes were:

- Renal infarction (any diagnosis) inpatient
- Stroke (any diagnosis) inpatient
- Myocardial infarction (any diagnosis) inpatient
- Acute chest syndrome (any diagnosis) emergency room (ER) or inpatient
- Acute pain episode (any diagnosis) ER or inpatient
- Iron overload episode (chelation treatment preceded by a diagnosis)

#### 5.2.3.2 Chronic outcomes (first recorded following cohort entry) for rate estimates

#### Chronic outcomes were:

- Pulmonary hypertension
- Heart failure
- Opioid dependence
- Nephropathy / chronic kidney disease (CKD)
- Fatigue
- Cognitive impairment

#### 5.2.3.3 **Acute outcomes for cost estimates**

Costs were estimated for the following acute outcomes:

- Stroke (any diagnosis) inpatient
- Myocardial infarction (any diagnosis) inpatient

- Acute chest syndrome (any diagnosis) ER or inpatient
- Acute pain episode (any diagnosis) ER or inpatient
- Iron overload episode (chelation treatment preceded by a diagnosis)

*Note:* Cost analyses were planned for renal infarction, but were not possible due to the small number of patients with an event during the analysis period.

#### 5.3 Data sources

All analyses were performed using de-identified administrative claims data without access to personal identifying information. Study findings contained aggregate data only that could not be used to identify individual patients.

#### 5.3.1 IBM Truven MarketScan

#### **Truven MarketScan Databases**

The Truven MarketScan databases capture de-identified, longitudinal, individual-level administrative claims data from the United States. The data available for this study included the Commercial Claims and Encounters (CCAE) Database and Medicare Supplemental and Coordination of Benefits Database. The IBM MarketScan Commercial Claims and Encounters (CCAE) Database contains data from active employees, early retirees, COBRA continuees, and dependents insured by employer- sponsored plans (i.e., individuals not eligible for Medicare). The IBM MarketScan Medicare Supplemental and Coordination of Benefits (COB) Database (also known as MDCR) is created for Medicare-eligible retirees with employer-sponsored Medicare Supplemental plans. This database contains predominantly fee-for-service plan data. Among the SCD population, 3% of patients had Medicare coverage.

The following tables of the MarketScan databases were available for analysis: Enrollment Detail, Inpatient Admissions, Inpatient Services, Outpatient Services, Outpatient Pharmaceutical Claims, and Long Term Care. These tables provide information on plan enrollment, healthcare utilization and expenditures, demographics, and integrated records for inpatient events, outpatient events, and pharmacy dispensings. Unless otherwise noted, drug event duration was calculated from the "Days Supply" field, and in cases where this field was 0, the duration was assumed to be 1 day.

Data were available from December 31, 2002 to December 31, 2017, and represent approximately 192 million patients.

#### **5.3.2** General notes on administrative databases

Electronic outpatient pharmacy dispensing records are considered accurate because pharmacists fill prescriptions with little room for interpretation, and are reimbursed by insurers on the basis of detailed, complete, and accurate claims submitted electronically. 1,2 Pharmacy dispensing information is usually seen as the gold standard of drug exposure information compared to self-reported information<sup>3</sup> or prescribing records in outpatient medical records.<sup>4</sup> Drugs used during hospital stays are not recorded in this data source. Prescribing information based on physician notes may overestimate actual medication use because up to 50% of prescriptions are never filled at the pharmacy.<sup>5</sup>

#### 5.4 Statistical analysis

#### 5.4.1 Rate of acute outcomes

Rates of acute outcomes were evaluated over the time period beginning on the cohort entry date, and ending on the first of disenrollment or end of data. Death is not captured within Marketscan data, but will trigger disenrollment. The total number of events across the population were counted and divided by total follow-up time. Rates were presented as events per 1000 person-years. Total event counts across the population were also provided.

The iron overload episode analysis was restricted to patients with complete prescription information.

Counts of events during a 1-year period were also calculated. This analysis was restricted to the subset of the population with a full year of follow-up. Mean number of events per patient and standard deviation (SD) was reported for all acute events. In addition, frequencies of counts of acute pain episode during follow-up were reported.

#### 5.4.2 Rates of chronic outcomes (first recorded occurrence following cohort entry)

Rates of chronic conditions were evaluated over the time period beginning on the cohort entry date, and ending on the first of disenrollment, end of data, or occurrence of outcome. The rate was calculated as the number of patients with an outcome divided by total follow-up time. Rates were presented as the value per 1000 person-years.

*Note:* This event rate should not be interpreted as a true incidence rate – refer to incidence analysis in Section 5.4.3.

#### Incidence of chronic outcome 5.4.3

In order to assess incidence of chronic conditions among patients who did not already have the chronic condition, an analysis was conducted restricted to patients with 180 days of baseline data who did not have the condition of interest recorded during that period. This analysis was conducted within a subset of SCD patients present in the data during 2013 – 2017, with cohort entry set to the first day when the

patient had 180 days of prior enrollment data. One limitation is the possibility that 180 days is not a sufficient look-back period for ascertaining the presence of chronic conditions, particularly if the patient had not actively sought care for the condition.

#### 5.4.4 Rates of treatment (following cohort entry)

Rates of treatment were evaluated over the time period beginning on the cohort entry date, and ending on the first of disenrollment, end of data, or occurrence of treatment. The rate was calculated as the number of patients with an outcome divided by total follow-up time. Rates were presented as the value per 1000 person-years.

#### 5.4.5 Costs of acute events

Cost analyses were based on paid amounts reported in the Marketscan data. For each acute outcome, incremental costs were estimated during the 14 day period beginning on the acute outcome date (day 0-13) and the 14 days following (day 14-27). For acute myocardial infarction and stroke, an average 30-day cost during the 28 to 365 days following the event was also provided. All costs were inflated to 2019 US dollars using the Medical Care Services Component of the Consumer Price Index.<sup>6</sup>

Incremental costs were calculated using a pre-post design among patients with the outcome of interest, with each patient serving as his or her own control. For each patient, a 14-day and 30-day average baseline cost was estimated using all available data during up to 180 days preceding the acute outcome date. The total cost during the 14 days beginning on the acute event (day 0-13) was calculated for each patient. The incremental cost was estimated as the difference between the day 0-13 cost and the 14-day average baseline cost. Mean (sd) and median [IQR] incremental cost values were calculated across the population as an estimate of the cost likely attributed to the acute outcome. A similar procedure was used for the day 14-27 incremental cost calculation, restricted to patients who were still in the dataset during this period. For the calculation of 30-day costs during the 28-365 days following the acute event, incremental cost was calculated as 30\* (total cost during day 28 to day 365 divided by follow-up days during day 28 to day 365 minus the 30-day baseline cost.

Because repeat events and other high cost acute events are modeled, including their costs within the estimated cost of an acute outcome would result in double-counting their costs. To avoid this, follow-up — and the accumulation of costs — was censored on the occurrence of MI, stroke, renal infarction or bone marrow transplant following the acute event date. Patients with these events during the 180 days preceding the acute event date were excluded from the analysis in order to obtain representative baseline cost data. Due to the higher prevalence of acute pain and acute chest syndrome, these events were not explicitly excluded; rather it was assumed that their costs during baseline and follow-up would net out across the population. Follow-up was additionally censored on the end of 365 days, end of data, or disenrollment.

To assess sensitivity of results to extreme cost values, an additional analysis was performed where incremental cost values were Winsorized, <sup>9</sup> using the 5<sup>th</sup> and 95<sup>th</sup> percentile of the cost distribution as cut points. These procedure involves replacing cost values below the 5<sup>th</sup> percentile with the 5<sup>th</sup> percentile value and values above the 95<sup>th</sup> percentile with the 95<sup>th</sup> percentile value. Thus, extreme values are pulled in, but the weight on the tails of the distribution is maintained.

#### **Costs of chronic events** 5.4.6

Costs of chronic conditions were estimated by comparing patients with the condition to matched patients without the condition. In order to obtain annual cost estimates, analyses were restricted to the subset of patients with complete 1-year follow-up. Cost analyses were based on paid amounts reported in the Marketscan data during the 1 year follow-up period. All costs were inflated to 2019 US dollars using the Medical Care Services Component of the Consumer Price Index.<sup>6</sup>

The effect of each chronic condition on cost was estimated by fitting an ordinary least squares (OLS) regression model predicting total 1-year cost as a function of the presence of the chronic condition, adjusting for patient characteristics at baseline. Baseline patients' characteristics include demographic factors measured on cohort entry date, health care resource utilization, costs, receipt of SCD treatments, and presence of other chronic conditions and acute outcomes during the 180 days prior to cohort entry.

The following patient characteristics were included in the fully-adjusted analysis:

- Age
- Age categories (<2, 2-4, 5-12, 13-18, 18+)
- Gender
- Region
- Presence of cognitive impairment
- Presence of nephropathy / CKD
- Presence of pulmonary hypertension
- Presence of opioid dependence
- Presence of heart failure
- Presence of fatigue

- Occurrence of iron overload episode
- Occurrence of acute chest syndrome (any dx) ER or inpatient
- Occurrence of acute pain episode (any dx) ER or inpatient
- Occurrence of stroke (any dx) inpatient
- Treatment with chronic transfusion
- Treatment with hydroxyurea
- Number of different prescription filled, at generic entity level
- Total inpatient costs
- Total outpatient costs
- Total pharmacy costs
- Hospitalization
- Number of outpatient visit days
- Number of emergency department visit days
- Number of prescriptions filled

# 5.4.7 Subgroup analysis

# 5.4.7.1 Rates of acute and chronic outcomes, incidence of chronic outcomes, and rates of treatment stratified by age

For rates of acute and chronic outcomes of interest, incidence of chronic outcomes, and rates of treatment, results were reported for the overall population and stratified on age group at cohort entry. Age categories were 0-1, 2-4, 5-12, 13-18, and 18+. In addition, results were generated for the combined pediatric (age <18) group.

# 5.4.7.2 Cost of acute events analysis stratified by age

For the cost of acute events analysis, results were stratified on age < 18 vs 18+. Due to small numbers of patients < 18 with myocardial infarction (n = 1), stratified results were not provided for myocardial infarction.

#### 5.4.8 Software

Results were generated using the Aetion Evidence Platform® version r3.18.20191126\_1826-0-g7a6bbbef8-dirty. The AEP has been previously validated for a range of studies<sup>10,11</sup> and for predicting clinical trial findings.<sup>12</sup> A full listing of all component software versions can be found in **Annex 2: Software Components**.

# **6.** References

| Annex 1: Variable definitions |  |  |
|-------------------------------|--|--|
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |
|                               |  |  |

| Variables           | Algorithm                                                                             | Source                                |
|---------------------|---------------------------------------------------------------------------------------|---------------------------------------|
| Disease             |                                                                                       |                                       |
| Sickle cell disease | Events occurring in any setting with one of the following diagnoses in any position   | Reeves et al,<br>2014 <sup>xiii</sup> |
|                     | <u>ICD10</u>                                                                          |                                       |
|                     | D57.0 - Hb-SS disease with crisis                                                     |                                       |
|                     | <ul> <li>D57.00 - Hb-SS disease with crisis,<br/>unspecified</li> </ul>               |                                       |
|                     | <ul> <li>D57.01 - Hb-SS disease with acute chest<br/>syndrome</li> </ul>              |                                       |
|                     | <ul> <li>D57.02 - Hb-SS disease with splenic sequestration</li> </ul>                 |                                       |
|                     | D57.1 - Sickle-cell disease without crisis                                            |                                       |
|                     | D57.2 - Sickle-cell/Hb-C disease                                                      |                                       |
|                     | <ul> <li>D57.20 - Sickle-cell/Hb-C disease without crisis</li> </ul>                  |                                       |
|                     | D57.21 - Sickle-cell/Hb-C disease with crisis                                         |                                       |
|                     | D57.211 - Sickle-cell/Hb-C disease with acute chest syndrome                          |                                       |
|                     | <ul> <li>D57.212 - Sickle-cell/Hb-C disease with<br/>splenic sequestration</li> </ul> |                                       |
|                     | <ul> <li>D57.219 - Sickle-cell/Hb-C disease with crisis,<br/>unspecified</li> </ul>   |                                       |
|                     | D57.4 - Sickle-cell thalassemia                                                       |                                       |
|                     | D57.40 - Sickle-cell thalassemia without crisis                                       |                                       |

|            | D57.41 - Sickle-cell thalassemia with crisis                                        |  |
|------------|-------------------------------------------------------------------------------------|--|
|            | <ul> <li>D57.411 - Sickle-cell thalassemia with acute<br/>chest syndrome</li> </ul> |  |
|            | <ul> <li>D57.412 - Sickle-cell thalassemia with splenic sequestration</li> </ul>    |  |
|            | <ul> <li>D57.419 - Sickle-cell thalassemia with crisis,<br/>unspecified</li> </ul>  |  |
|            | ICD9                                                                                |  |
|            | 282.41 - SICKLE-CELL THALASSEMIA     WITHOUT CRISIS                                 |  |
|            | • 282.42 - SICKLE-CELL THALASSEMIA WITH CRISIS                                      |  |
|            | • 282.6 - SICKLE-CELL DISEASE                                                       |  |
|            | 282.60 - SICKLE-CELL DISEASE UNSPECIFIED                                            |  |
|            | • 282.61 - HB-SS DISEASE WITHOUT CRISIS                                             |  |
|            | • 282.62 - HB-SS DISEASE WITH CRISIS                                                |  |
|            | <ul> <li>282.63 - SICKLE-CELL/HB-C DISEASE<br/>WITHOUT CRISIS</li> </ul>            |  |
|            | • 282.64 - SICKLE-CELL/HB C DISEASE WITH CRISIS                                     |  |
|            | 282.68 - OTHER SICKLE-CELL DISEASE WITHOUT CRISIS                                   |  |
|            | 282.69 - OTHER SICKLE-CELL DISEASE WITH<br>CRISIS                                   |  |
| Treatments |                                                                                     |  |

| Hydroxyurea | The occurrence of <b>Prescription Claims</b> with the following attributes:  - NDC Generic Name is any of: { "HYDROXYUREA" }                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Transfusion | NDC Generic Name is any of: { "HYDROXYUREA" }  The occurrence of Inpatient Service or outpatient event with the following attributes:  Procedure Code (Position 1), ICD-10 is any of: { "30230P1", "30240H1", "30240N1", "30233P1", "30233H1", "30243N1", "30243P1", "30233H1", "30243P1", "30243P1", "30233N1", "30240P1" }  30230P1 - Transfusion of Nonautologous Frozen Red Cells into Peripheral Vein, Open Approach  30240H1 - Transfusion of Nonautologous Whole Blood into Central Vein, Open Approach  30240N1 - Transfusion of Nonautologous Red Blood Cells into Central Vein, Open Approach | Code search (ICD10) |
|             | 30243H1 - Transfusion of     Nonautologous Whole Blood     into Central Vein, Percutaneous     Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|             | 30230N1 - Transfusion of     Nonautologous Red Blood Cells     into Peripheral Vein, Open     Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |

- 30233P1 Transfusion of Nonautologous Frozen Red Cells into Peripheral Vein, Percutaneous Approach
- 30230H1 Transfusion of Nonautologous Whole Blood into Peripheral Vein, Open Approach
- 30243N1 Transfusion of Nonautologous Red Blood Cells into Central Vein, Percutaneous Approach
- 30243P1 Transfusion of Nonautologous Frozen Red Cells into Central Vein, Percutaneous Approach
- 30233H1 Transfusion of Nonautologous Whole Blood into Peripheral Vein, Percutaneous Approach
- 30233N1 Transfusion of Nonautologous Red Blood Cells into Peripheral Vein, Percutaneous Approach
- 30240P1 Transfusion of Nonautologous Frozen Red Cells into Central Vein, Open Approach
- Procedure Code (Position 1), CPT and HCPC is any of: { "36440", "36450", "S3906", "P9010", "S9538", "36455", "36430", "P9038", "P9011", "P9022",

"P9051", "P9056", "P9057", "P9021", "P9054", "P9058", "P9016" }

- 36440 Push transfusion, blood, 2 years or under / Push transfusion, blood, 2 years or younger
- 36450 Exchange transfusion, blood; newborn
- S3906 TRANSFUSION, DIRECT, **BLOOD OR BLOOD COMPONENTS**
- P9010 BLOOD (WHOLE), FOR TRANSFUSION, PER UNIT
- S9538 HOME TRANSFUSION OF BLOOD PRODUCT(S); ADMINISTRATIVE SERVICES, PROFESSIONAL PHARMACY SERVICES, CARE COORDINATION AND ALL NECESSARY SUPPLIES AND EQUIPMENT (BLOOD PRODUCTS, DRUGS, AND NURSING VISITS CODED SEPARATELY), PER DIEM / HOME TRANSFUSION OF BLOOD PRODUCT(S); ADMINISTRATIVE SERVICES, PROFESSIONAL PHARMACY SERVICES, CARE **COORDINATION AND ALL NECESSARY SUPPLIES AND EQUIPMENT (BLOOD** PRODUCTS, DRUGS, AND **NURSING VISITS CODED** SEPARATELY), PER DIEM

- 36455 Exchange transfusion, blood; other than newborn
- 36430 Transfusion, blood or blood components
- P9038 RED BLOOD CELLS, IRRADIATED, EACH UNIT
- P9011 BLOOD (SPLIT UNIT),
   SPECIFY AMOUNT / BLOOD,
   SPLIT UNIT
- P9022 RED BLOOD CELLS,
   WASHED, EACH UNIT
- P9051 WHOLE BLOOD OR RED BLOOD CELLS, LEUKOCYTES REDUCED, CMV-NEGATIVE, EACH UNIT
- P9056 WHOLE BLOOD, LEUKOCYTES REDUCED, IRRADIATED, EACH UNIT
- P9057 RED BLOOD CELLS, FROZEN/DEGLYCEROLIZED/WAS HED, LEUKOCYTES REDUCED, IRRADIATED, EACH UNIT
- P9021 RED BLOOD CELLS, EACH UNIT
- P9054 WHOLE BLOOD OR RED BLOOD CELLS, LEUKOCYTES REDUCED, FROZEN, DEGLYCEROL, WASHED, EACH UNIT
- P9058 RED BLOOD CELLS, LEUKOCYTES REDUCED, CMV-

| _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                        | NEGATIVE, IRRADIATED, EACH UNIT  P9016 - RED BLOOD CELLS, LEUKOCYTES REDUCED, EACH UNIT  Procedure Code (Position 1), ICD-9 is any of: { "99.03", "99.04", "99.01" }  99.03 - OTHER TRANSFUSION OF WHOLE BLOOD  99.04 - TRANSFUSION OF PACKED CELLS  99.01 - EXCHANGE TRANSFUSION                                                                                                                                                                                                                                                              |                                                                                  |
| Chronic transfusion    | A sequence of 3+ transfusion events, with each spaced 2 – 6 weeks apart. The start of the first event was used as the episode start date                                                                                                                                                                                                                                                                                                                                                                                                       | Based on a review of treatment patterns and clinical expert(s) <sup>xiv,xv</sup> |
| Bone marrow transplant | The occurrence of an Inpatient Service or Outpatient event with the following attributes:  • Procedure Code (Position 1), ICD-10 is any of: {     "30230G2", "30230G3", "30230G4", "30233G2",     "30233G3", "30233G4", "30240G2", "30240G3",     "30240G4", "30243G2", "30243G3", "30243G4",     "30250G1", "30253G1", "30260G1", "30263G1" }  • 30230G2 - Transfusion of Allogeneic Related Bone Marrow into Peripheral Vein, Open Approach  • 30230G3 - Transfusion of Allogeneic Unrelated Bone Marrow into Peripheral Vein, Open Approach | American Society for Blood and Marrow Transplantationxvi                         |

- 30230G4 Transfusion of Allogeneic
   Unspecified Bone Marrow into Peripheral
   Vein, Open Approach
- 30233G2 Transfusion of Allogeneic Related Bone Marrow into Peripheral Vein, Percutaneous Approach
- 30233G3 Transfusion of Allogeneic
   Unrelated Bone Marrow into Peripheral
   Vein, Percutaneous Approach
- 30233G4 Transfusion of Allogeneic
   Unspecified Bone Marrow into Peripheral
   Vein, Percutaneous Approach
- 30240G2 Transfusion of Allogeneic Related Bone Marrow into Central Vein, Open Approach
- 30240G3 Transfusion of Allogeneic Unrelated Bone Marrow into Central Vein, Open Approach
- 30240G4 Transfusion of Allogeneic
   Unspecified Bone Marrow into Central
   Vein, Open Approach
- 30243G2 Transfusion of Allogeneic Related Bone Marrow into Central Vein, Percutaneous Approach
- 30243G3 Transfusion of Allogeneic Unrelated Bone Marrow into Central Vein, Percutaneous Approach
- 30243G4 Transfusion of Allogeneic
   Unspecified Bone Marrow into Central
   Vein, Percutaneous Approach

- 30250G1 Transfusion of Nonautologous Bone Marrow into Peripheral Artery,
   Open Approach
- 30253G1 Transfusion of Nonautologous Bone Marrow into Peripheral Artery, Percutaneous Approach
- 30260G1 Transfusion of Nonautologous Bone Marrow into Central Artery, Open Approach
- 30263G1 Transfusion of Nonautologous Bone Marrow into Central Artery, Percutaneous Approach
- Procedure Code (Position 1), ICD-9 is any of: {
   "41.02", "41.03" }
  - 41.02 ALLOGENEIC BONE MARROW TRANSPLANT WITH PURGING
  - 41.03 ALLOGENEIC BONE MARROW TRANSPLANT WITHOUT PURGING
- Procedure Code (Position 1), CPT and HCPC is any of: { "38240", "38243", "38242" }
  - 38240 Bone marrow or blood-derived peripheral stem cell transplantation; allogeneic / Bone marrow or bloodderived peripheral stem cell transplantation; allogenic / Hematopoietic progenitor cell (HPC); allogeneic transplantation per donor
  - 38243 Hematopoietic progenitor cell (HPC); HPC boost
  - 38242 Allogeneic lymphocyte infusions / Bone marrow or blood-derived peripheral

|                                  | stem cell transplantation; allogeneic donor lymphocyte infusions             |                                              |
|----------------------------------|------------------------------------------------------------------------------|----------------------------------------------|
| Ischemia-related outcomes: acute |                                                                              |                                              |
| Acute pain episode               | Events occurring in an inpatient or ER setting with any diagnosis of:  ICD9: | Shah et al, 2019 <sup>xvii</sup>             |
|                                  | 282.42 - Sickle-cell thalassemia with crisis                                 | Bernard et al,<br>2008 <sup>xviii</sup>      |
|                                  | 282.62 - Hb-SS disease with crisis                                           |                                              |
|                                  | 282.64 - Sickle-cell/Hb-C disease with crisis                                |                                              |
|                                  | 282.69 - Other sickle-cell disorders with crisis, unspecified                |                                              |
|                                  | <u>ICD10:</u>                                                                |                                              |
|                                  | D57.00 - Hb-SS disease with crisis, unspecified                              |                                              |
|                                  | D57.219- Sickle-cell/Hb-C disease with crisis, unspecified                   |                                              |
|                                  | D57.419 - Sickle-cell thalassemia with crisis, unspecified                   |                                              |
|                                  | D57.819 - Other sickle-cell disorders with crisis, unspecified               |                                              |
| Acute chest syndrome             | Events occurring in an inpatient or ER setting with any diagnosis of:        | Agarwal_et al,<br>2018 <sup>xix</sup> (ICD9) |
|                                  | ICD10:                                                                       |                                              |

|                       | D57.211 - Sickle-cell /Hb-C disease with acute chest syndrome  D57.01 - Hb-SS disease with acute chest syndrome  D57.411 - Sickle-cell thalassemia with acute chest syndrome  D57.811 - Other sickle-cell disorders with acute chest syndrome  ICD9:  517.3 - Acute chest syndrome                                                                      | Code search<br>(ICD10)                      |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Myocardial infarction | Events occurring in an inpatient setting with any diagnosis of:  ICD9: 410.x0 - Acute myocardial infarction, episode of care unspecified  ICD9: 410.x1 - Acute myocardial infarction, initial episode of care  ICD10:  I21.x - Acute myocardial infarction  I22.x - Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction | Kiyota Y et al, 2004**  Code search (ICD10) |
| Renal infarction      | Events occurring in an inpatient setting with any diagnosis of:  ICD10: N28.0 - Ischemia and infarction of kidney  ICD9: 593.81 - vascular disorders of the kidney                                                                                                                                                                                      | Code search<br>(ICD10)                      |

| Stroke (ischemic or hemorrhagic)   | Events occurring in an inpatient setting with any diagnosis of:                                                                                                                                                                                                 | Kumamaru et al,<br>2004 (ICD9) <sup>xxi</sup> |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                    | ICD9:  430.x - Subarachnoid hemorrhage  431.x - Intracerebral hemorrhage  433.x1 - Occlusion and stenosis of precerebral arteries, with infarct  434.x1 - Occlusion of cerebral arteries, with infarct  436.x - Acute, but ill-defined, cerebrovascular disease | Code search<br>(ICD10)                        |
|                                    | ICD10:  I60.x - Nontraumatic subarachnoid hemorrhage  I61.x - Nontraumatic intracerebral hemorrhage  162.x - Other and unspecified nontraumatic intracranial hemorrhage  I63.xx - Cerebral infarction                                                           |                                               |
| Ischemia-related outcomes: chronic |                                                                                                                                                                                                                                                                 |                                               |
| Opioid tolerance /<br>dependence   | Events occurring in an any setting with any diagnosis of:                                                                                                                                                                                                       | Agarwal et al,<br>2018 (ICD9) <sup>xxii</sup> |
|                                    | ICD-9:<br>304.00 - 304.03 - Opioid dependence                                                                                                                                                                                                                   | Code search<br>(ICD10)                        |

|                           | 304.70–73 - Opioid dependence with other drug dependence  ICD-10:  F11.2x - Opioid dependence                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Pulmonary<br>hypertension | Events occurring in an any setting with any diagnosis of:  ICD10:                                                                                                                                                                                                                                                                                                                                                                                                                                  | Agarwal et al,<br>2018 (ICD9) <sup>xxii</sup> |
|                           | I27.0x - primary pulmonary hypertension  I27.2x - secondary pulmonary hypertension  I27.81 - Cor pulmonale (chronic) (due to pulmonary hypertension)  I27.9 - Pulmonary heart disease, unspecified (resulting from pulmonary hypertension)  ICD9:  416.0 - primary pulmonary hypertension  416.8 - Other chronic pulmonary heart diseases (including secondary pulmonary hypertension)  416.9 - Chronic pulmonary heart disease, unspecified (heart disease resulting from pulmonary hypertension) | Code search<br>(ICD10)                        |
| Heart failure             | Events occurring in an any setting with any diagnosis of:  ICD9:                                                                                                                                                                                                                                                                                                                                                                                                                                   | Brophy et al, 2004<br>(ICD9) <sup>xxiii</sup> |

|                                           | 428.xx - heart failure  ICD10:  I50 - heart failure                                                                                                                                                                                                                                                                            | Code search<br>(ICD10)                         |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Nephropathy,<br>chronic kidney<br>disease | Events occurring in an any setting with any diagnosis of:                                                                                                                                                                                                                                                                      | Young et al, 2008<br>(ICD9) <sup>xxiv</sup>    |
|                                           | ICD9:  585.x - chronic kidney disease  586, 593.9 - unspecified kidney failure  580.x - acute glomerulonephritis  582.x - chronic glomerulonephritis (nephritic syndrome)  250.4x, 249.4x - diabetes with renal manifestations  583.x -nephritis and nephropathy not specified as acute or chronic  581.x - nephrotic syndrome | Glasheen et al,<br>2017 (ICD10) <sup>xxv</sup> |
|                                           | ICD10:  N18.x - chronic kidney disease  N19 - unspecified kidney failure  N00.x - acute glomerulonephritis  N03.x -chronic glomerulonephritis (nephritic syndrome)                                                                                                                                                             |                                                |

|                           | N05.x - nephritis and nephropathy not specified as acute or chronic                    |                                                                  |
|---------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                           | E08.2x - Diabetes mellitus due to underlying condition with kidney complications       |                                                                  |
|                           | E09.2x - Drug or chemical induced diabetes mellitus with kidney complications          |                                                                  |
|                           | E10.2x - Type 1 diabetes mellitus with kidney complications                            |                                                                  |
|                           | E11.2x - Type 2 diabetes mellitus with kidney complications                            |                                                                  |
|                           | E13.2 - Other specified diabetes mellitus with kidney complications                    |                                                                  |
|                           | N04.x - nephrotic syndrome                                                             |                                                                  |
| Neurocognitive impairment | Events occurring in an any setting with any diagnosis of:                              | Amra S et al,<br>2017 <sup>xxvi</sup> and code<br>search (ICD10) |
|                           | ICD9                                                                                   |                                                                  |
|                           | 331.83 - MILD COGNITIVE IMPAIRMENT SO<br>STATED                                        |                                                                  |
|                           | • 780.93 - MEMORY LOSS                                                                 |                                                                  |
|                           | 438.0 - COGNITIVE DEFICITS                                                             |                                                                  |
|                           | 294.9 - UNSPECIFIED PERSISTENT MENTAL DISORDERS DUE TO CONDITIONS CLASSIFIED ELSEWHERE |                                                                  |
|                           | 799.5 - SIGNS AND SYMPTOMS INVOLVING COGNITION                                         |                                                                  |
|                           |                                                                                        |                                                                  |

- 799.51 ATTENTION OR CONCENTRATION **DEFICIT**
- 799.52 COGNITIVE COMMUNICATION **DEFICIT**
- 799.53 VISUOSPATIAL DEFICIT
- 799.54 PSYCHOMOTOR DEFICIT
- 799.55 FRONTAL LOBE AND EXECUTIVE **FUNCTION DEFICIT**
- 799.59 OTHER SIGNS AND SYMPTOMS INVOLVING COGNITION
- 290 DEMENTIAS
- 290.0 SENILE DEMENTIA UNCOMPLICATED
- 290.1x PRESENILE DEMENTIA
- 290.2x SENILE DEMENTIA WITH DELUSIONAL OR DEPRESSIVE FEATURES
- 290.3 SENILE DEMENTIA WITH DELIRIUM
- 290.4x VASCULAR DEMENTIA
- 291.2 ALCOHOL-INDUCED PERSISTING **DEMENTIA**
- 292.82 DRUG-INDUCED PERSISTING **DEMENTIA**
- 294.1x DEMENTIA IN CONDITIONS CLASSIFIED ELSEWHERE
- 294.2x DEMENTIA UNSPECIFIED
- 331.1 FRONTOTEMPORAL DEMENTIA

- 331.19 OTHER FRONTOTEMPORAL DEMENTIA
- 331.82 DEMENTIA WITH LEWY BODIES

## ICD10

- 169.11 Cognitive deficits following nontraumatic intracerebral hemorrhage
- I69.01 Cognitive deficits following nontraumatic subarachnoid hemorrhage
- 169.91 Cognitive deficits following unspecified cerebrovascular disease
- 169.21 Cognitive deficits following other nontraumatic intracranial hemorrhage
- 169.31 Cognitive deficits following cerebral infarction
- 169.81 Cognitive deficits following other cerebrovascular disease
- G31.83 Dementia with Lewy bodies
- G31.84 Mild cognitive impairment, so stated
- R41 Other symptoms and signs involving cognitive functions and awareness
- R41.0 Disorientation, unspecified
- R41.1 Anterograde amnesia
- R41.2 Retrograde amnesia
- R41.3 Other amnesia

- R41.4 Neurologic neglect syndrome
- R41.8 Other symptoms and signs involving cognitive functions and awareness
- R41.81 Age-related cognitive decline
- R41.82 Altered mental status, unspecified
- R41.83 Borderline intellectual functioning
- R41.84 Other specified cognitive deficit
- R41.840 Attention and concentration deficit
- R41.841 Cognitive communication deficit
- R41.842 Visuospatial deficit
- R41.843 Psychomotor deficit
- R41.844 Frontal lobe and executive function deficit
- R41.89 Other symptoms and signs involving cognitive functions and awareness
- R41.9 Unspecified symptoms and signs involving cognitive functions and awareness
- F01 Vascular dementia
- F01.5 Vascular dementia
- F01.50 Vascular dementia without behavioral disturbance
- F01.51 Vascular dementia with behavioral disturbance
- F02 Dementia in other diseases classified elsewhere

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>,</del>                       |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                | <ul> <li>F02.8 - Dementia in other diseases classified elsewhere</li> <li>F02.80 - Dementia in other diseases classified elsewhere without behavioral disturbance</li> <li>F02.81 - Dementia in other diseases classified elsewhere with behavioral disturbance</li> <li>F03 - Unspecified dementia</li> <li>F03.9 - Unspecified dementia without behavioral disturbance</li> <li>F03.91 - Unspecified dementia with behavioral disturbance</li> </ul> |                                    |
| Anemia-related outcomes: acute |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| Acute pain syndrome            | (see above)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| Acute chest syndrome           | (see above)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| Iron overload<br>episode       | Defined as chelation, with an iron overload diagnosis during the past 60 days. Chelation drug prescriptions within 180 days of one another were considered part of the same episode.                                                                                                                                                                                                                                                                   | Clinical expert(s) and assumptions |
| Iron Overload Due to pRBCs     | Events in any setting with a primary diagnosis of:  Hemochromatosis due to repeat transfusions                                                                                                                                                                                                                                                                                                                                                         | Code search<br>(ICD10)             |

|                                           | ICD10                                                                              |  |
|-------------------------------------------|------------------------------------------------------------------------------------|--|
|                                           | E83.111                                                                            |  |
|                                           |                                                                                    |  |
|                                           | ICD9                                                                               |  |
|                                           | 275.02                                                                             |  |
|                                           |                                                                                    |  |
|                                           |                                                                                    |  |
| Use of chelation drugs                    | Use of iron chelation drug - "DEFEROXAMINE MESYLATE", "DEFERASIROX", "DEFERIPRONE" |  |
| Stroke                                    | (see above)                                                                        |  |
| Anemia-related outcomes: chronic          |                                                                                    |  |
| Opioid tolerance / dependence             | (see above)                                                                        |  |
| Pulmonary<br>hypertension                 | (see above)                                                                        |  |
| Heart failure                             | (see above)                                                                        |  |
| Nephropathy,<br>chronic kidney<br>disease | (see above)                                                                        |  |
| Neurocognitive impairment                 | (see above)                                                                        |  |

| Fatigue | <ul> <li>G93.3 - Postviral fatigue syndrome</li> <li>R53.0 - Neoplastic (malignant) related fatigue</li> <li>R53.1 - Weakness</li> <li>R53.81 - Other malaise</li> <li>R53.82 - Chronic fatigue, unspecified</li> <li>R53.83 - Other fatigue</li> </ul> | U.S. Agency for<br>Healthcare<br>Research and<br>Quality. Clinical<br>Classifications<br>Software (CCS),<br>2018.************************************ |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>780.7 - MALAISE AND FATIGUE</li> <li>780.71 - CHRONIC FATIGUE SYNDROME</li> <li>780.79 - OTHER MALAISE AND FATIGUE</li> </ul>                                                                                                                  |                                                                                                                                                       |

## **Annex 2: Software Components**

| • | Package       | • | Version     |
|---|---------------|---|-------------|
| • | R             | • | 3.4.2       |
| • | Formula       | • | 1.2.2       |
| • | Hmisc         | • | 4.0.3       |
| • | RColorBrewer  | • | 1.1.2       |
| • | Rcpp          | • | 0.12.13     |
| • | RcppArmadillo | • | 0.8.100.1.0 |

- SparseM 1.77
- TH.data 1.0.8
- acepack
   1.4.1
- aetionstats2.0
- colorspace 1.3.2
- dichromat 2.0.0
- digest 0.6.12
- epitools 0.5.10
- forecast 8.2
- fracdiff 1.4.2
- ggplot2 2.2.1
- gridExtra 2.3
- gtable 0.2.0
- jsonlite 1.5
- labeling0.3
- latticeExtra 0.6.28
- magrittr 1.5
- metafor 2.0.0
- multcomp 1.4.8
- munsell 0.4.3
- mvtnorm 1.0.6
- plyr 1.8.4
- polspline 1.1.12

- proto
- 0.3-10
- quadprog
- 1.5.5
- quantreg
- 5.34
- reshape
- 0.8.7
- reshape2
- 1.4.2
- rms
- 5.1.1
- sandwich
- 2.4.0
- scales
- 0.5.0
- stringi
- 1.1.6
- stringr
- 1.2.0
- timeDate
- 3042.101
- tseries
- 0.10.42
- zoo
- 1.8.0

## **Annex 3: Annex References**

<sup>1</sup> Stergachis AS. Record linkage studies for postmarketing drug surveillance: Data quality and validity considerations. *Drug Intell Clin Pharm*. 1988;22(2):157–161. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3349931.

- <sup>3</sup> West SL, Savitz DA, Koch G, Strom BL, Guess HA, Hartzema A. Recall accuracy for prescription medications: Self-report compared with database information. *Am J Epidemiol*. 1995;142(10):1103–1112. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7485055.
- <sup>4</sup> West SL, Strom BL, Freundlich B, Normand E, Koch G, Savitz DA. Completeness of prescription recording in outpatient medical records from a health maintenance organization. *J Clin Epidemiol*. 1994;47(2):165–171. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8113825.
- <sup>5</sup> Fischer MA, Stedman MR, Lii J, et al. Primary medication non-adherence: Analysis of 195,930 electronic prescriptions. *J Gen Intern Med*. 2010;25(4):284–290. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20131023.
- <sup>6</sup> U.S. Bureau of Statistics. Consumer Price Index. Medical Care Services Component of the Consumer Price Index. Accessed 14 January 2020. Available from: <a href="https://www.bls.gov/cpi/home.htm">https://www.bls.gov/cpi/home.htm</a>.
- <sup>7</sup>Luengo-Fernandez R, Yiin GS, Gray AM, Rothwell PM. Population-based study of acute- and long-term care costs after stroke in patients with AF. *Int J Stroke*. 2013; 8(5): 308–314. doi:10.1111/j.1747-4949.2012.00812.x.
- <sup>8</sup> Danese MD, Gleeson M, Kutikova L, Griffiths RI, Azough A, Khunti K, Seshasai SR, Ray KK. Estimating the economic burden of cardiovascular events in patients receiving lipid-modifying therapy in the UK. *BMJ Open*. 2016 Aug 5;6(8):e011805. doi: 10.1136/bmjopen-2016-011805.
- <sup>9</sup> Weichle T, Hynes DM, Durazo-Arvizu R, Tarlov E and Zhang Q. Impact of alternative approaches to assess outlying and influential observations on health care costs. *SpringerPlus* 2013, 2:614. doi: 10.1186/2193-1801-2-614.

<sup>&</sup>lt;sup>2</sup> Levy AR, O'Brien BJ, Sellors C, Grootendorst P, Willison D. Coding accuracy of administrative drug claims in the ontario drug benefit database. *Can J Clin Pharmacol*. 2003;10(2):67–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12879144.

- <sup>10</sup> Wang SV, Verpillat P, Rassen JA, Patrick A, Garry EM, Bartels DB. Transparency and reproducibility of observational cohort studies using large healthcare databases. *Clin Pharmacol Ther*. 2016;99(3):325-332.
- <sup>11</sup> Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an sglt2 inhibitor. *N Engl J Med*. 2017;376(23):2300-2302.
- <sup>12</sup> Kim SC, Solomon DH, Rogers JR, et al. Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study. *Arthritis Rheumatol*. 2017;69(6):1154-1164.
- <sup>xiii</sup> Reeves S, Garcia E, Kleyn M, Housey M, Stottlemyer R, Lyon-Callo S, Dombkowski KJ. Identifying sickle cell disease cases using administrative claims. Acad Pediatr. 2014 Sep-Oct;14(5 Suppl):S61-7. doi: 10.1016/j.acap.2014.02.008. Epub 2014 May 29.
- <u>xiv</u> <u>Transfusion Therapy in Sickle Cell Disease.</u>
  <a href="https://sickle.bwh.harvard.edu/transfusion.html">https://sickle.bwh.harvard.edu/transfusion.html</a> <u>Published January 4, 2001.</u> <u>Accessed January 14, 2020.</u>
- <sup>xv</sup> Indiana Hemophilia & Thrombosis Center. Blood Transfusion for Sickle Cell Disease Treatment, <a href="https://www.ihtc.org/sickle-cell-blood-transfusions/">https://www.ihtc.org/sickle-cell-blood-transfusions/</a> Accessed January 14, 2020.
- xvi American Society for Blood and Marrow Transplantation (ASBMT). CPT Codes for Bone Marrow Transplant. <a href="https://higherlogicdownload.s3.amazonaws.com/ASBMT/43a1f41f-55cb-4c97-9e78-c03e867db505/UploadedImages/BMT\_Coding\_Article\_Final.pdf">https://higherlogicdownload.s3.amazonaws.com/ASBMT/43a1f41f-55cb-4c97-9e78-c03e867db505/UploadedImages/BMT\_Coding\_Article\_Final.pdf</a> Published January 2015 Accessed 15 January 2020.
- xvii Shah N, Bhor M, Xie L, Paulose J, Yuce H. Sickle cell disease complications: Prevalence and resource utilization. PLoS ONE 2019; 14 (7): e0214355. https://doi.org/10.1371/journal.pone.0214355.
- <sup>xviii</sup> Bernard AW, Lindsell CJ, Venkat A. Derivation of a risk assessment tool for emergency department patients with sickle cell disease. *Emergency Medicine Journal* 2008; 25:635-639.
- xix Agarwal, MA, Shah M, Patel B, et al. Association between Pulmonary Hypertension and Clinical Outcomes in Hospitalized Patients with Sickle Cell Disease. American

Journal of Respiratory and Critical Care Medicine 2018; 198(4): 534-537. DOI: 10.1164/rccm.201802-0317LE.

- <sup>xx</sup> Kiyota Y, <u>Schneeweiss S</u>, Glynn RJ, Cannuscio CC, Avorn J, Solomon DH. Accuracy of Medicare claims-based diagnosis of acute myocardial infarction: estimating positive predictive value on the basis of review of hospital records. Am Heart J. 2004 Jul;148(1):99-104.
- <sup>xxi</sup> Kumamaru H, Judd SE, Curtis JR, et al. Validity of claims-based stroke algorithms in contemporary Medicare data: reasons for geographic and racial differences in stroke (REGARDS) study linked with medicare claims. Circ Cardiovasc Qual Outcomes. 2014 Jul;7(4):611-9. doi: 10.1161/CIRCOUTCOMES.113.000743. Epub 2014 Jun 24.
- xxii Agarwal, MA, Shah M, Patel B, et al. Association between Pulmonary Hypertension and Clinical Outcomes in Hospitalized Patients with Sickle Cell Disease. American Journal of Respiratory and Critical Care Medicine 2018; 198(4): 534-537. DOI: 10.1164/rccm.201802-0317LE.
- <sup>xxiii</sup> Brophy MT, Snyder KE, Gaehde S, Ives C, Gagnon D, Fiore LD. Anticoagulant use for atrial fibrillation in the elderly. J Am Geriatr Soc. 2004 Jul;52(7):1151-6.
- xxiv Young BA, Lin E, Von Korff M, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care. 2008 Jan;14(1):15-23.
- xxv Glasheen WP, Renda A, Dong Y. Diabetes Complications Severity Index (DCSI)—Update and ICD-10 translation. Journal of Diabetes and its Complications 2017; 31(6):1007-1013. https://doi.org/10.1016/j.jdiacomp.2017.02.018.
- xxvi Amra S, O'Horo JC, Singh TD, et al. Derivation and validation of the automated search algorithms to identify cognitive impairment and dementia in electronic health records. J Crit Care. 2017 Feb;37:202-205. doi: 10.1016/j.jcrc.2016.09.026.
- xxvii U.S. Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project (H-Cup). Clinical Classifications Software (CCS), 2018. <a href="https://www.hcup-us.ahrq.gov/tools\_software.jsp">https://www.hcup-us.ahrq.gov/tools\_software.jsp</a>. Published October 2019. Accessed January 14 2020.