Atidarsagene Autotemcel for Metachromatic Leukodystrophy: Effectiveness and Value

Public Meeting — September 29, 2023

Meeting materials available at: https://icer.org/assessment/metachromatic-

leukodystrophy-2023/#timeline

Patient Experts

Maria Kefalas, Ph.D., Founder, Cure MLD; Professor, Saint Joseph's University

Cure MLD has received grants from Bluebird Bio, Homology Medicines, Orchard
Therapeutics, Takeda Pharmaceuticals, and Passage Bio, Inc.

Teryn Suhr, R.N., Executive Director, MLD Foundation

- MLD Foundation has received sponsorships from various biopharma companies for their annual family conference.
- Mrs. Suhr has equity interests such as individual stocks, stock options, or other ownership interests in excess of \$10,000 in Orchard Therapeutics.

Clinical Experts

Francesca Fumagalli, M.D., Ph.D. Neurologist, Pediatric Immunohematology Unit and Department of Neurology, IRCCS San Raffaele Hospital, Milan

 Dr. Fumagalli is a sub investigator of clinical trials NCT01560182 and NCT03392987 and PI of clinical trial NCT04283227 using OTL-200 sponsored by Orchard Therapeutics. Dr. Fumagalli has received less than \$5,000 in honoraria from Orchard Therapeutics and Takeda.

Paul Orchard, M.D., Director of the Inherited Metabolic and Storage Disease Program, Professor of Pediatric Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota

 Dr. Orchard's team offers expanded access to OLT-200 in association with Orchard Therapeutics for specific patients. Dr. Orchard has received less than \$5,000 in honoraria or consultancies from Orchard Therapeutics.

Why are we here today?

Our son's condition has impacted him immensely as he was once a healthy active child who would always be outside with our dogs or riding his bike, now he is nonmobile, non-verbal, unable to swallow safely so [is] tube fed, he has no voluntary movements of his limbs, and he is starting to lose his sight. He does have a little head control but only for a few seconds before [his] head drops forward.

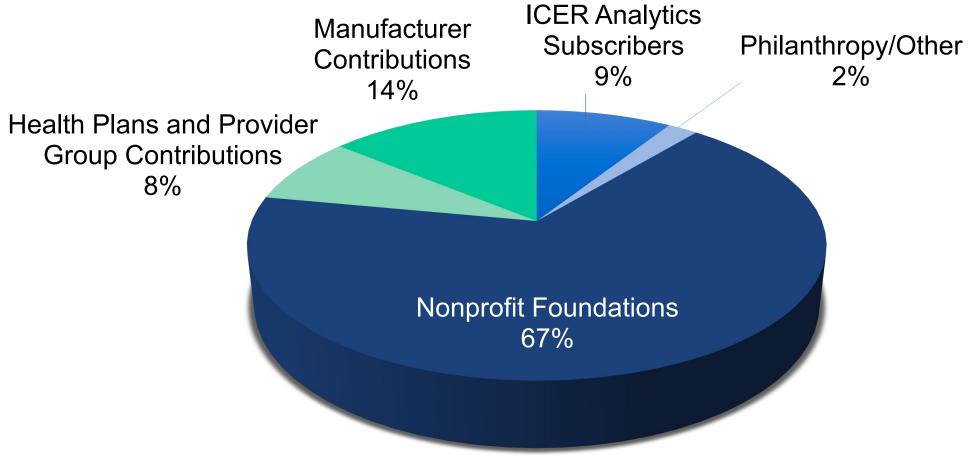
Parent of child with MLD

Why Are We Here Today?

- What happens the day these treatments receive FDA approval?
- Questions about:
 - What are the risks and benefits?
 - How do new treatments fit into the evolving landscape?
 - What are reasonable prices and costs to patients, the health system, and the government?
 - What lessons are being learned to guide our actions in the future?

The Impact on Rising Health Care Costs for Everyone

https://khn.org/news/article/diagnosis-debt-investigation-100-million-americans-hidden-medical-debt/


© 2023 Institute for Clinical and Economic Review

Organizational Overview

- California Technology Assessment Forum (CTAF)
- Institute for Clinical and Economic Review (ICER)

Funding 2023

ICER Policy Summit and non-report activities only

How Was the ICER Report Developed?

- Scoping with guidance from patients, clinical experts, manufacturers, and other stakeholders
- Internal ICER evidence analysis and cost-effectiveness modeling
- Public comment and revision
- Expert reviewers
 - Francesca Fumagalli, M.D., Ph.D., Neurologist, IRCCS San Raffaele Hospital, Milan
 - Paul Orchard, M.D., Professor of Pediatrics, University of Minnesota
 - Teryn Suhr, R.N. and Dean Suhr, B.S., Executive Director and President, MLD Foundation
 - Paul Tappenden, B.A., MSc, Ph.D., Professor of Health Economic Modelling, University of Sheffield
- How is the evidence report structured to support CTAF voting and policy discussion?

Value Assessment Framework: Long-Term Value for Money

Special Social/Ethical Priorities

Benefits Beyond "Health"

Total Cost Overall Including Cost Offsets

Health Benefits: Return of Function, Fewer Side Effects

> Health Benefits: Longer Life

Agenda (PT)

9:00 AM	Meeting Convened and Opening Remarks				
9:20 AM	Presentation of the Clinical Evidence				
10:00 AM	Presentation of the Economic Model				
10:40 AM	Public Comments and Discussion				
11:05 AM	Lunch Break				
11:50 AM	CTAF Deliberation and Vote				
12:50 PM	Break				
1:00 PM	Policy Roundtable Discussion				
2:30 PM	Reflections from CTAF				
3:00 PM	Meeting Adjourned				

Presentation of the Clinical Evidence

Grace Lin, M.D.

Medical Director for Health Technology Assessment, ICER

Professor of Medicine and Health Policy, UCSF

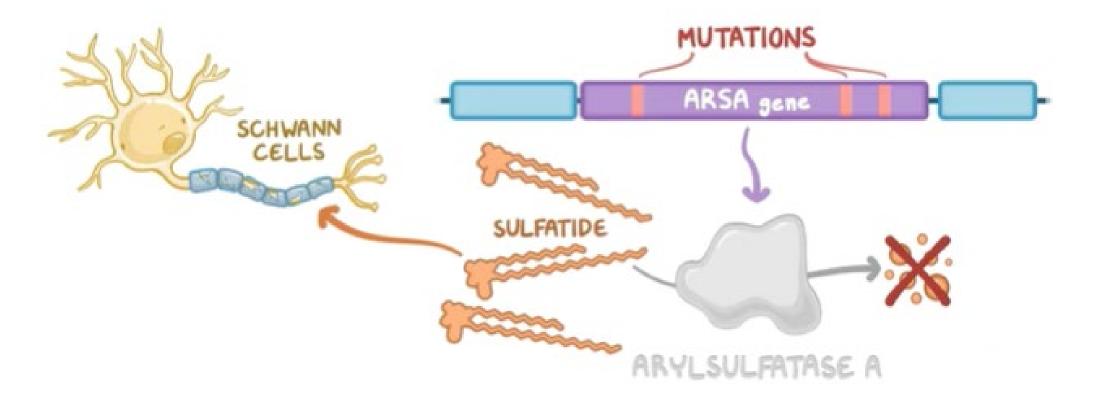
Key Collaborators

- Shahariar Mohammed Fahim, Ph.D., Research Lead, Evidence Synthesis, ICER
- Belen Herce-Hagiwara, B.A., Senior Research Assistant, ICER
- Finn Raymond, B.S., Research Assistant, ICER

Disclosures:

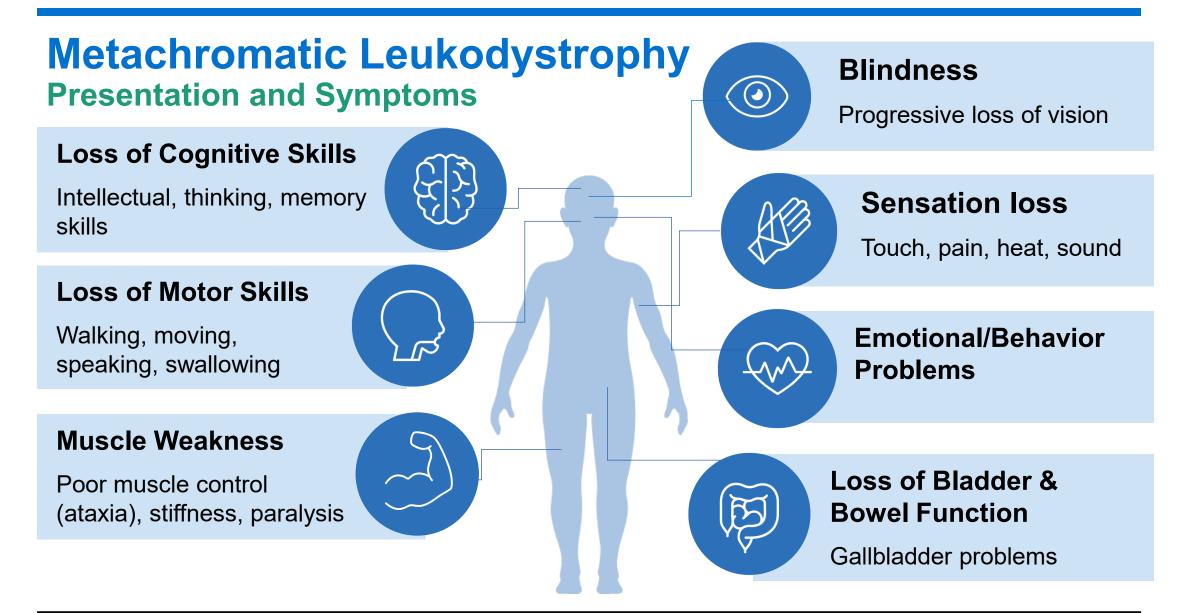
Financial support was provided by ICER to the University of California, San Francisco.

No conflicts to disclose defined as more than \$10,000 in health care company stock or more than \$5,000 in honoraria or consultancies relevant to this report during the previous year from health care technology manufacturers or insurers.



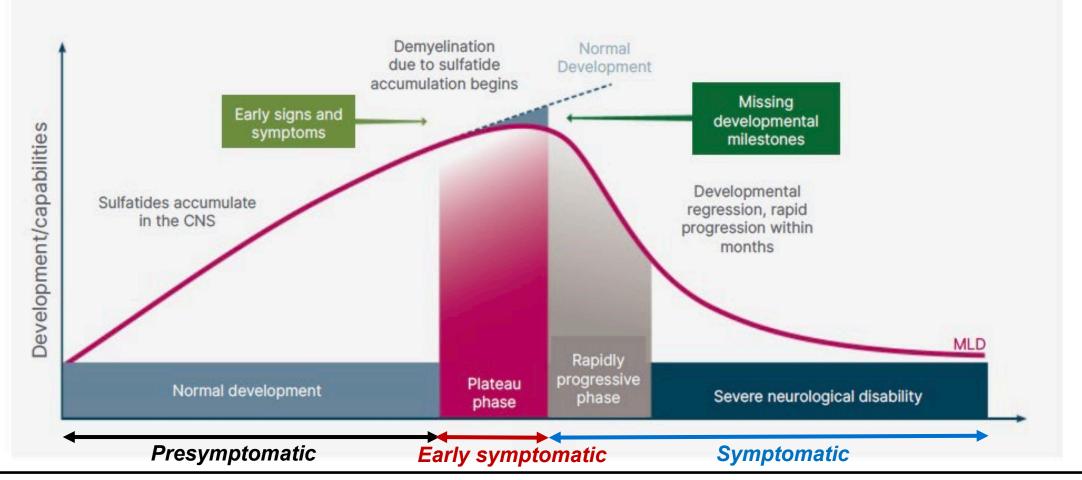
Metachromatic Leukodystrophy (MLD) Overview

- Rare genetic disease, inherited in autosomal recessive fashion
- Affects 1 in 40,000 1 in 160,000; about 2,500 people in the US
 - More common in US western Navajo, Alaska Native, and Habbanite Jew populations
- Caused mainly by mutations in the ARSA gene, which codes for arylsulfatase A enzyme



Metachromatic Leukodystrophy What Causes MLD?

ARSA: arylsulfatase A, MLD: metachromatic leukodystrophy https://www.youtube.com/watch?v=tSos-AQLwT4&ab_channel=OsmosisfromElsevier 16


https://www.huntershope.org/familycare/leukodystrophies/metachromatic-leukodystrophy/ 17

Metachromatic Leukodystrophy Classification of Subtypes

Form	Age of Onset	Implications	Population Size
Late Infantile	6-30 months	 Most common form Presents with difficulty walking, developmental delays 5–6-year survival after symptom onset 	∼50-60% of patients
Early Juvenile	30 months- 7 years	 Slower progression than late infantile, normal development before age 2.5 years Can present with impaired school performance, cognitive 	~20-35% of patients
Late Juvenile	7-16 years	 and physical decline 10–20-year survival estimate after symptom onset 	
Adult	Ages 16+ years	 Slowest progression, normal development before 16 Psychiatric disorders, progressive dementia 20–30-year survival estimate after symptom onset 	~15-20% of patients

Metachromatic Leukodystrophy Natural History

Campbell and Fumagalli, EMJ Neurol. 2022;10[1]:20-28.

Metachromatic Leukodystrophy Current Treatment

Supportive Care

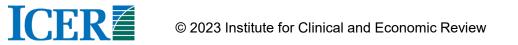
- Physical & occupational therapy
- Nutrition support (G-tube)
- Wheelchair
- Symptomatic care (cough assist, oscillation device)
- Ventilator

Slow Disease Progression

 ? Hematopoietic stem cell transplant (HSCT)

Insights from Discussions with Patients

Impact on caregivers and family


- Caregivers feel unprepared for hospital/ICU-level care children may need at home, especially at later stages of disease
- Unaffected children also impacted one parent always missing events, difficult to travel
- Interpersonal relationship challenges may lead to separation and divorce

Financial impact

- One or both parents often need to leave the workforce
- Insurance barriers/lack of coverage for nursing care, coverage of special diet, home modifications, etc.

Importance of newborn screening

• Possible gene therapy is most effective before symptoms of disease appear

Clinical Evidence

Populations for the Review

- Children with presymptomatic late infantile MLD (LI-MLD)
- Children with presymptomatic early juvenile MLD (EJ-MLD)
- Children with early symptomatic EJ-MLD
 - Able to ambulate independently (Gross Motor Function Classification for MLD [GFMC-MLD] score of ≤1)
 - Preserved cognition (intelligence quotient [IQ] score of \geq 85).

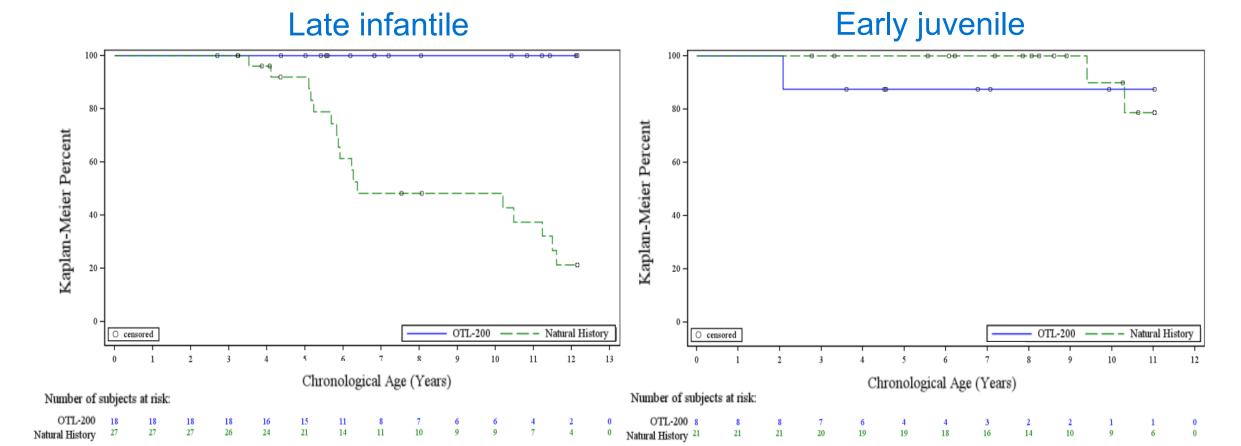
Intervention

- Atidarsagene autotemcel (arsa-cel, Libmeldy[™] in EU, OTL-200) compared with natural history cohort
- Treatment with arsa-cel includes:
 - Harvesting of patient's hematopoietic stem and progenitor cells
 - CD34+ cells transduced with lentiviral vector encoding ARSA cDNA
 - Patient undergoes bone marrow suppression with chemotherapy (busulfan conditioning)
 - Transduced cells are given back to patient through autologous stem cell transplantation

Overview of Key Studies

Trials N		Population	Key Outcomes		
Phase I/II 2		 Children with disease onset <7 years old Presymptomatic LI-MLD Presymptomatic EJ-MLD Early symptomatic EJ-MLD 	 Overall survival Motor function (GMFM-88, GFMC-MLD) Cognitive function ARSA activity 		
Phase II	10	Same as Phase I/II study	Same as Phase I/II study		
Expanded Access Frameworks	3	Early onset MLD patients with similar	 Similar endpoints to those in the 		
Compassionate Use Programs	6	enrollment criteria to clinical trials	primary study		

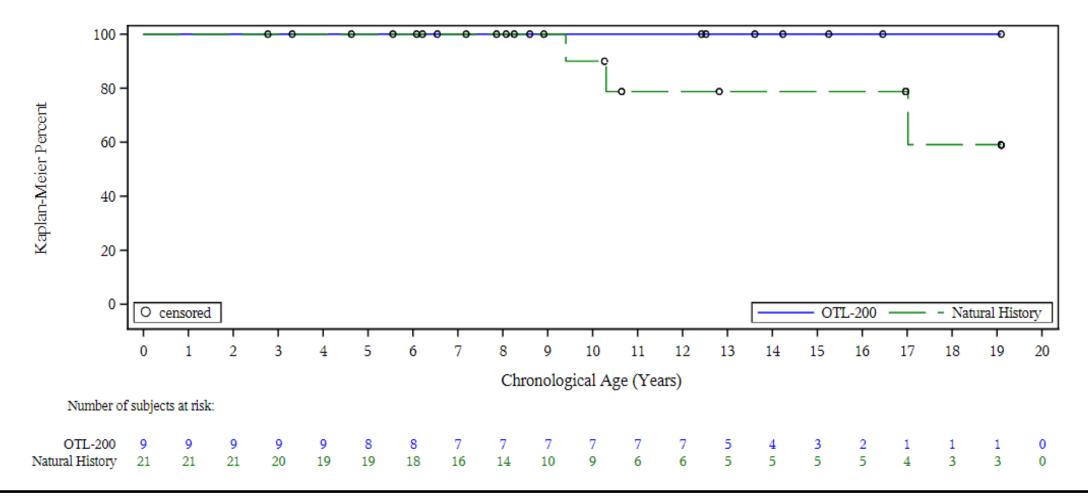
ARSA: arylsulfatase A, GMFM: gross motor function measure, MLD: metachromatic leukodystrophy, N: total number



Baseline Characteristics

Arms		ptomatic MLD	Presymptomatic EJ-MLD	Early Symptomatic EJ-MLD	Overall EJ-MLD
	Arsa-cel	Natural History	Arsa-cel	Arsa-cel	Natural History
Ν	18	26	8	9	17
Male, n	13	12	6	6	9
Follow-up, median years (range)	6.1 (2.4-11)	4.4 (0.6-18.9)	3.3 (1.1-8.4)	7.2 (0.6-9.2)	5.6 (0.4-20.7)
Age at gene therapy or first contact, median	10.3 months	18.8 months	16.1 months	66.7 months	52.6 months
Baseline GMFM- 88, mean	47.2	Not recorded	72.0	92.4	Not recorded

EJ-MLD: early juvenile MLD, GMFM: Gross Motor Function Measure, LI-MLD: late-infantile MLD


Overall Survival – Presymptomatic Patients

Fumigalli et al, Lancet 2022;399(10322):372-383

Overall Survival: Early Symptomatic EJ-MLD

ICER

© 2023 Institute for Clinical and Economic Review

Fumigalli et al, Lancet 2022;399(10322):372-383

Gross Motor Function Measure (GMFM-88)

	Presymptomatic LI-MLD		Presymptomatic EJ-MLD		Early symptomatic EJ-MLD	
Arms	Arsa-cel	Natural History	Arsa-cel	Natural History	Arsa-cel	Natural History
Year 2						
N Evaluated	16	11	7	8	9	13
GMFM Total Score, Median	81.55	4.80	92.71	46.96	88.47	39.58
Treatment Difference	76.75		45.75		48.89	
Year 5						
N Evaluated	7	9	2	8	3	7
GMFM Total Score, Median	87.92	1.51	100	8.09	48.36	2.29
Treatment Difference	86.41		91.91		46.07	

[Scores range from 0 to 100 with a higher score indicating better performance]

ARSA Activity Levels

- ARSA activity levels increased in all groups to normal or supranormal levels after treatment with arsa-cel.
- None of treated patients (N=35) had ARSA activity level in the peripheral blood cells below the reference range after up to 11 years of follow-up.

Cognitive Function and Additional Endpoints

- Cognitive function was preserved in almost all treated patients compared to severe cognitive decline in patients in the natural history cohort.
- The majority of patients in the treated presymptomatic LI-MLD (17/18) and EJ-MLD (7/8) remained in GFMC-MLD stages 0-2.
- None of the trials collected data on health-related quality of life.

Harms

- All patients had grade 3 or 4 adverse events, mainly from busulfan conditioning (febrile neutropenia, stomatitis)
- Of patients who had 7.5 years of follow-up:
 - Half had gait disturbance and one-third had motor dysfunction related to MLD progression
 - 15% of patients developed anti-ARSA antibodies
 - 1 death related to adverse event (presymptomatic EJ-MLD)

Controversies and Uncertainties

- Small, single arm study compared to a natural history cohort
- Unknown long-term durability and long-term harms
- Chance of disease progression after treatment
 - Two additional deaths in early symptomatic EJ-MLD patients in early stage of trial (excluded from analytic cohort)
- Chance of busulfan conditioning regimen hastening disease progression

Potential Other Benefits and Contextual Considerations

- Currently no effective disease-modifying treatments for children with early onset MLD
- Children typically die during childhood; effective disease-modifying therapy would have a dramatic lifetime impact
- Caregiving impact of MLD is extremely high (work, physical/emotional impact, family impact)
- Effective treatment could change healthcare "infrastructure" in terms of earlier and better recognition of disease (e.g., newborn screening)

Public Comments Received


• Lack of access to an effective therapy should be considered harm

ICER Evidence Ratings for Arsa-cel vs. Usual Care

Population	Evidence Rating		
Presymptomatic LI-MLD	А		
Presymptomatic EJ-MLD	А		
Early symptomatic EJ-MLD	B+		

EJ: early juvenile, LI: late infantile, MLD: metachromatic leukodystrophy

Summary

- Early onset MLD is a rare but devastating disease
- Treatment for presymptomatic LI- and EJ-MLD prevents onset or delays progression of disease, extends survival with normal or near normal cognitive and motor function
- Benefit of treatment in early symptomatic EJ-MLD is smaller and less certain
 - Children do not recover function previously lost and more rapid progression prior to stabilization is possible
- Question remains regarding the durability and long-term harms of arsa-cel

Atidarsagene Autotemcel: Effectiveness and Value

Kangho Suh, Pharm.D., Ph.D.

Assistant Professor

School of Pharmacy, University of Pittsburgh

Key Review Team Members

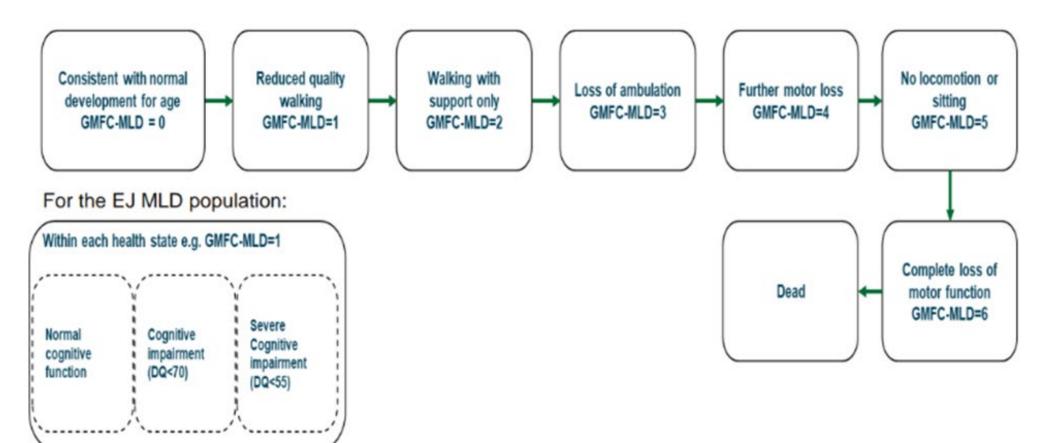
- Josh J. Carlson, MPH, Ph.D., Professor, University of Washington
- Ronald Dickerson, MPH, M.Econ, Research Assistant, University of Washington School of Pharmacy
- Marina Richardson, MSc, Ph.D., Senior Health Economist, ICER

Disclosures:

Financial support was provided to the University of Washington and Pittsburgh from the Institute for Clinical and Economic Review.

Drs. Suh and Carlson have no conflicts to disclose defined as more than \$10,000 in health care company stock or more than \$5,000 in honoraria or consultancies relevant to this report during the previous year from health care technology manufacturers or insurers.

Estimate the lifetime cost-effectiveness of arsa-cel



Methods in Brief

Methods Overview

- Model: Markov model
- Setting: United States
- Perspective: Health Care Sector and Modified Societal Perspectives
- Time Horizon: Lifetime
- Discount Rate: 3% per year (costs and outcomes)
- Cycle Length: 1 month
- Primary Outcome: Cost per quality-adjusted life year (QALY) gained; cost per life year (LY) gained; cost per equal value LYs gained (evLY)

Model Schematic

DQ: Developmental Quotient, GMFC: Gross Motor Function Classification, MLD: Metachromatic Leukodystrophy

Model Characteristics

- Target population: three subtypes of MLD
 - Presymptomatic LI-MLD
 - Presymptomatic EJ-MLD
 - Early symptomatic EJ-MLD

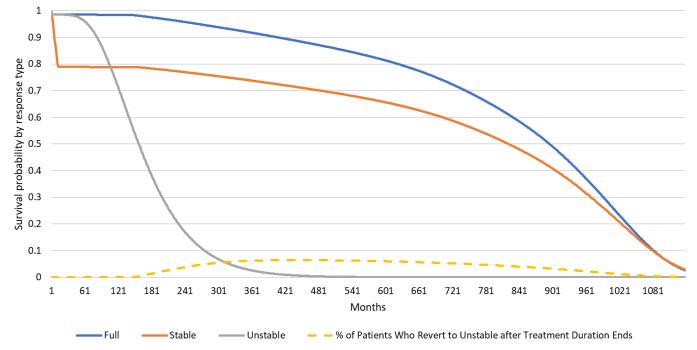
EJ: early juvenile; LI: late infantile; MLD: metachromatic leukodystrophy

Key Model Inputs: Usual Care Mean Time to Transition (Months)

Presymptomatic Late Infantile

GMFC-MLD Transitions	Usual Care
From 0 to 1	3.32
From 1 to 2	4.22
From 2 to 3	3.53
From 3 to 4	3.53
From 4 to 5	3.53
From 5 to 6	10.10
From 6 to death	57.68

GMFC: Gross Motor Function Classification, MLD: Metachromatic Leukodystrophy



Key Model Inputs: Arsa-cel Transition Probabilities

Treatment effect is based on:

- Response type (trial data)
 - Full response
 - Stable partial response
 - Unstable partial response
- Disease stabilization (12 years, trial data)
- Post stabilization disease progression
 - 0.02% per month transition to unstable partial (prior ICER gene therapy reports)
 - Leads to 9.2% of full or partial responders experiencing disease progression by age 50

Presymptomatic Late Infantile

Additional Model Assumptions

- Patients can only become progressively worse (i.e., move to a higher GMFC-MLD state)
- Patients can only die from GMFC-MLD state 6
- A 1.4% risk of death from infusion work for gene therapy in first model cycle

Key Model Inputs: Treatment Costs

Cost	Value	Notes
Arsa-cel	\$2,800,000	Placeholder price based on Norwegian Krone (NOK) 30,074,576, converted to US\$2,800,240; one time cost
Arsa-cel Administration	\$171,000	Includes costs for leukapheresis (cell harvesting), hospitalization and busulfan (conditioning), autologous bone marrow transplantation, follow-up related to autologous transplantation; one time cost

Arsa-cel: atidarsagene autotemcel

Key Model Inputs: Health Care Sector Costs (Monthly)

Cost	Value	Notes	
GFMC-MLD 0	\$296		
GMFC-MLD 1	\$1,015	Most costs attributable to medical tests and visits	
GMFC-MLD 2	\$1,912		
GMFC-MLD 3	\$6,171		
GMFC-MLD 4	\$7,435	Greatest costs due to	
GMFC-MLD 5	\$7,981	hospitalizations, daily nursing care, and healthcare equipment	
GMFC-MLD 6	\$20,058		

GMFC: Gross Motor Function Classification, MLD: metachromatic leukodystrophy

Key Model Inputs: Indirect Costs (Monthly)

Cost	Value	Notes	
Caregiver Loss of Income			
GMFC-MLD 1 and 2	\$83		
GMFC-MLD 3 and 4	\$2,405		
GMFC-MLD 5 and 6	\$4,019	Estimated from survey responses from	
Out of Po	10 US caregivers of patients with MLD		
GMFC-MLD 1 and 2	\$13		
GMFC-MLD 3 and 4	\$503		
GMFC-MLD 5 and 6	\$121		

GMFC: Gross Motor Function Classification; MLD: metachromatic leukodystrophy, US: United States

Key Model Inputs: Utilities

	Late Infantile
GFMC-MLD 0	Age adjusted general population
GMFC-MLD 1	0.71
GMFC-MLD 2	0.44
GMFC-MLD 3	-0.04
GMFC-MLD 4	-0.13
GMFC-MLD 5	-0.20
GMFC-MLD 6	-0.27

GMFC: Gross Motor Function Classification, MLD: metachromatic leukodystrophy

Key Model Inputs: Caregiver Disutilities

GMFC-MLD State	Caregiver disutility
0	0
1	-0.02
2	-0.027
3	-0.0675
4	-0.108
5	-0.135
6	-0.189

GMFC: Gross Motor Function Classification, MLD: metachromatic leukodystrophy

Results

Base-Case Results

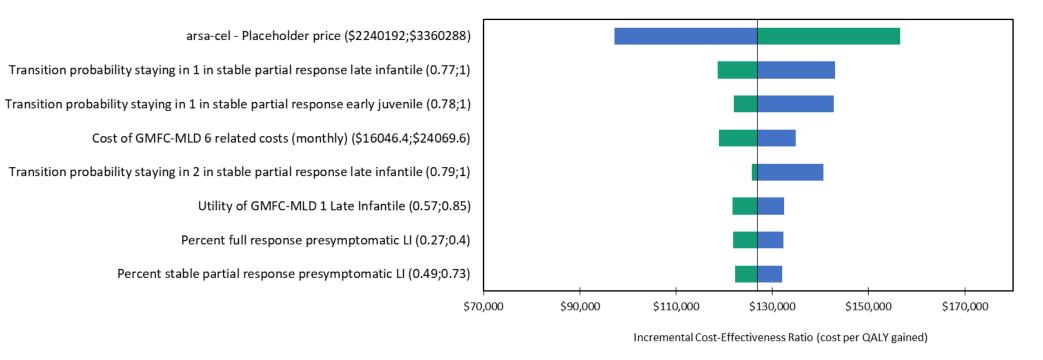
Drug	Drug Cost	Total Cost	QALYs	evLYs	LYs	
Health Care Sector Perspective						
Arsa-cel	\$2,800,000*	\$3,493,000	18.32	20.94	25.66	
Usual care	\$0	\$1,104,000	-0.51	-0.51	7.44	
Incremental Results	\$2,800,000	\$2,389,000	18.83	21.45	18.22	
Modified Societal Perspective						
Arsa-cel	\$2,800,000*	\$3,607,000	17.78	20.94	25.66	
Usual care	\$0	\$1,383,000	-1.49	-1.49	7.44	
Incremental Results	\$2,800,000	\$2,225,000	19.26	22.43	18.22	

Arsa-cel: atidarsagene autotemcel, evLY: equal-value of life-year, LY: life-year, QALY: quality-adjusted life-year *Based on placeholder price

Base-Case Incremental Results

Treatment	Comparator	Cost per QALY Gained*	Cost per evLY Gained*	Cost per LY Gained*
	Heal	th Care Sector Perspe	ctive	
Arsa-cel	Usual care	\$127,000	\$111,000	\$131,000
	Мос	dified societal perspec	tive	
Arsa-cel	Usual care	\$115,000	\$99,000	\$122,000

Arsa-cel: atidarsagene autotemcel, evLY: equal-value of life-year, LY: life-year, QALY: quality-adjusted life-year *Based on placeholder price



Subtype-specific Incremental Results

Subtype	Cost per QALY Gained*	Cost per evLY Gained*	Cost per LY Gained*
	Healthcare Sect	or Perspective	
Presymptomatic LI	\$119,000	\$100,000	\$109,000
Presymptomatic EJ	\$79,000	\$79,000	\$101,000
Early Symptomatic EJ	\$245,000	\$193,000	\$267,000
	Modified Societ	al Perspective	
Presymptomatic LI	\$107,000	\$88,000	\$100,000
Presymptomatic EJ	\$65,000	\$65,000	\$87,000
Early Symptomatic EJ	\$246,000	\$181,000	\$267,000

EJ: early juvenile; evLY: equal-value of life-year, LI: late infantile; LY: life-year, QALY: quality-adjusted life-year *Based on placeholder price

One-way Sensitivity Analyses

High Input

Probabilistic Sensitivity Analysis

	Cost Effective at \$50,000 per QALY Gained	Cost Effective at \$100,000 per QALY Gained Health Care Sector Pers	Cost Effective at \$150,000 per QALY Gained	Cost Effective at \$200,000 per QALY Gained
Arsa-cel	0%	0.01%	97.20%	100%
		Modified Societal Persp	pective	
Arsa-cel	0%	4.1%	99.6%	100%
QALY: quality-adjusted	d life-year			

Scenario Analyses

	Cost per QALY Gained (Health Care Sector)	Cost per evLYG Gained (Health Care Sector)	Cost per QALY Gained (Modified Societal)	Cost per evLYG Gained (Modified Societal)
Rescaled Utility Estimates	\$138,000	\$121,000	\$125,000	\$108,000
Alternative Caregiver Disutilities	-	-	\$121,000	\$101,000

evLY: equal-value of life-year, LY: life-year, QALY: quality-adjusted life-year

Health Benefit Price Benchmarks (HBPBs)

Price Benchmarks for Arsa-cel

Intervention	Placeholder Price	Price at \$100,000 Threshold	Price at \$150,000 Threshold	Perspective
		QALYs Gained		
Arsa-cel	\$2,800,000	\$2,294,000	\$3,236,000	Health care sector
Arsa-cel	\$2,800,000	\$2,502,000	\$3,465,000	Modified societal
		evLYs Gained		
Arsa-cel	\$2,800,000	\$2,557,000	\$3,629,000	Health care sector
Arsa-cel	\$2,800,000	\$2,818,000	\$3,940,000	Modified societal

arsa-cel: atidarsagene autotemcel, evLY: equal-value of life-year, LY: life-year, QALY: quality-adjusted life-year

Limitations

- Small sample
- Durability of treatment effect unknown
- Treatment response categories

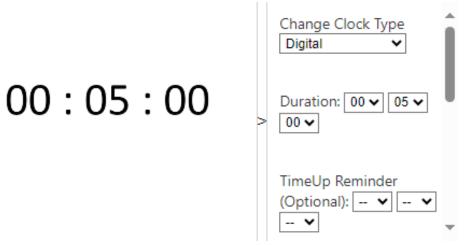
Comments Received

- Utilities that allow for negative values versus rescaled non-negative values
- Durability of treatment effect assumption
- Progression after stabilization period ends

Conclusions

- Arsa-cel provides clinical benefit in terms of gains in QALYs, evLYs, and LYs over usual care from both the healthcare sector and modified societal perspectives
- At the currently assumed placeholder price, arsa-cel would be costeffective at a commonly accepted threshold of \$150,000 per QALY gained

evLY: equal-value of life-year, LY: life-year, QALY: quality-adjusted life-year

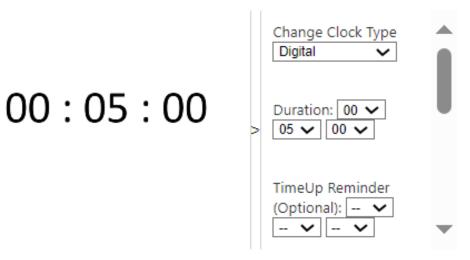


Public Comment and Discussion

Kent Christopherson, Ph.D. Executive Director & Head, Global Medical Affairs, Orchard Therapeutics

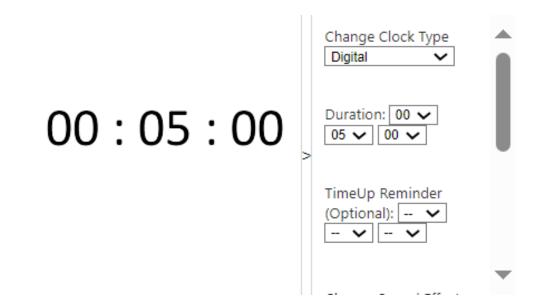
Conflicts of Interest:

• Dr. Christopherson is a full-time employee of Orchard Therapeutics.



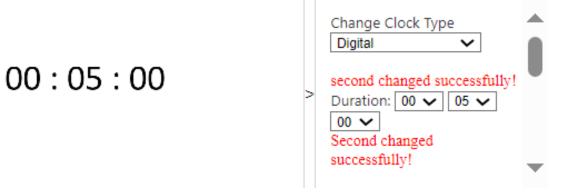
Maria Kefalas, Ph.D. Founder, Cure MLD; Professor, Saint Joseph's University

Conflicts of Interest:


• Cure MLD has received grants from Bluebird Bio, Homology Medicines, Orchard Therapeutics, Takeda Pharmaceuticals, and Passage Bio, Inc.

Victoria Rasberry MLD Parent

- Conflicts of Interest:
 - No conflicts to disclose.



Dean Suhr, B.S. President, MLD Foundation

Conflicts of Interest:

- MLD Foundation has received sponsorships from various biopharma companies for their annual family conference.
- *Mr.* Suhr has equity interests such as individual stocks, stock options, or other ownership interests in excess of \$10,000 in Orchard Therapeutics.

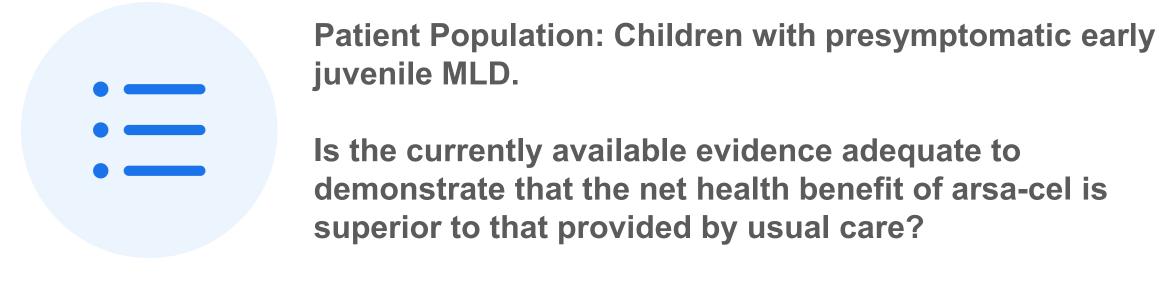
Amy Wright MLD Parent

- Conflicts of Interest:
 - No conflicts to disclose.

Change Clock Type Digital \sim second changed successfully! 00:05:00 Duration: 00 🗸 05 ~ 00 ~ Second changed successfully! TimeUp Reminder (Optional): -- 🗸 - v - v T

Lunch

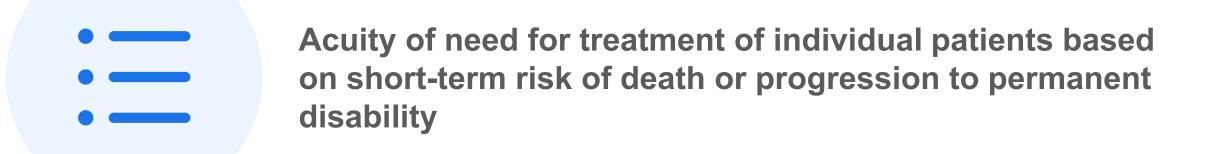
Meeting will resume at 11:50 AM PT

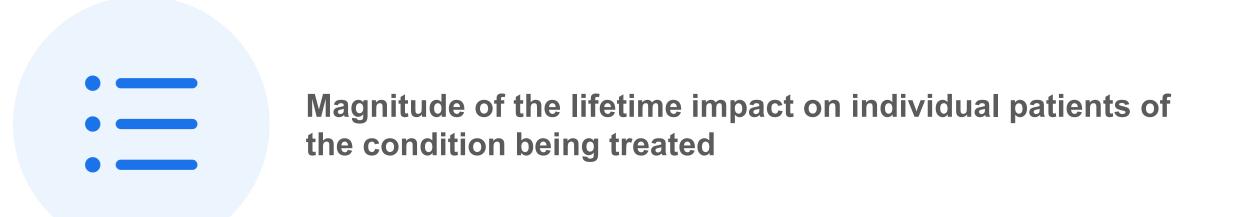

© 2023 Institute for Clinical and Economic Review

Voting Questions

Clinical Evidence Questions

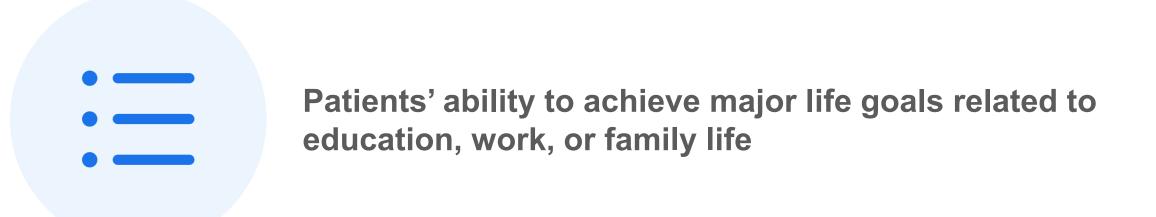
Patient Population: Children with presymptomatic late infantile MLD.

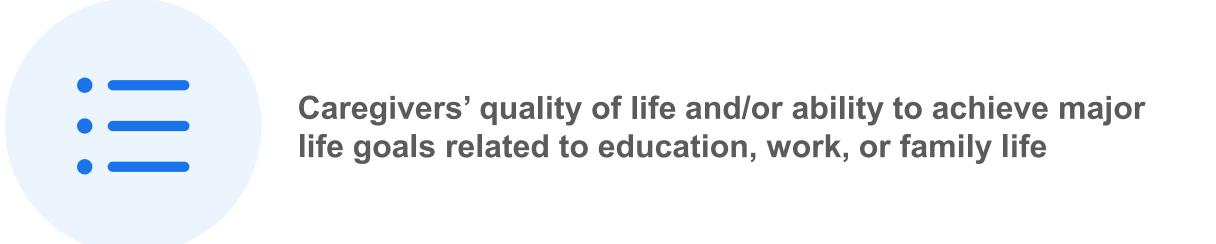

Is the currently available evidence adequate to demonstrate that the net health benefit of atidarsagene autotemcel (arsa-cel) is superior to that provided by usual care?


Patient Population: Children with early symptomatic early juvenile MLD.

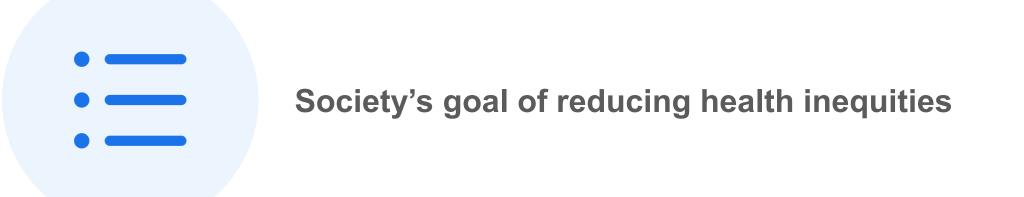
Is the currently available evidence adequate to demonstrate that the net health benefit of arsa-cel is superior to that provided by usual care? Contextual Considerations and Potential Other Benefits or Disadvantages Questions Patient Population: Children with presymptomatic late infantile MLD or presymptomatic early juvenile MLD

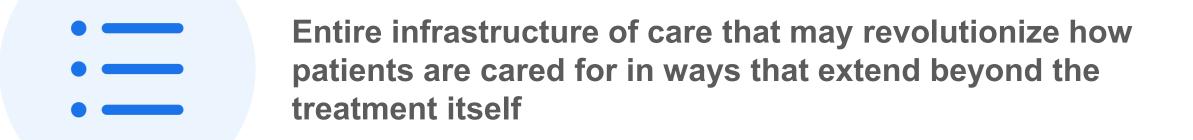
When making judgments of overall long-term value for money, what is the relative priority that should be given to <u>any</u> effective treatment for metachromatic leukodystrophy, on the basis of the following contextual considerations:



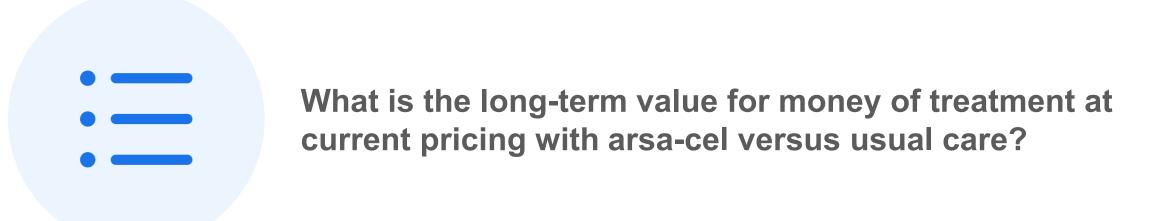

Patient Population: Children with presymptomatic late infantile MLD or presymptomatic early juvenile MLD

What are the relative effects of arsa-cel versus usual care on the following outcomes that inform judgment of the overall long-term value for money of arsa-cel?





Other: The entire "infrastructure" of care, including effects on screening for affected patients, the awareness of clinicians, and the dissemination of understanding about the condition, that may revolutionize how patients are cared for in ways that extend beyond the treatment itself



Long-Term Value for Money Question

Given available evidence on comparative effectiveness and incremental cost-effectiveness, and considering other benefits, disadvantages, and contextual considerations, what is the long-term value for money of treatment at current pricing with arsa-cel versus usual care?

Break

Meeting will resume at 1:00 PM PT

© 2023 Institute for Clinical and Economic Review

Policy Roundtable

Policy Roundtable Participant	Conflict of Interest
Francesca Fumagalli, M.D, Ph.D., Neurologist, Pediatric Immunohematology Unit and Department of Neurology, IRCCS San Raffaele Hospital, Milan	Dr. Fumagalli is a sub investigator of clinical trials NCT01560182 and NCT03392987 and PI of clinical trial NCT04283227 using OTL-200 sponsored by Orchard Therapeutics. Dr. Fumagalli has received less than \$5,000 in honoraria from Orchard Therapeutics and Takeda.
Stephen Jung, Pharm.D., Principal Pharmacist, Blue Shield of California	Stephen is a full-time employee of Blue California.
Maria Kefalas, Ph.D., Founder, Cure MLD; Professor, Saint Joseph's University	Cure MLD has received grants from Bluebird Bio, Homology Medicines, Orchard Therapeutics, Takeda Pharmaceuticals, and Passage Bio, Inc.
Julia Mahler, Pharm.D., Clinical Pharmacist, IPD Analytics	Julia is a full-time employee of IPD Analytics.
Paul Orchard, M.D. , Director of the Inherited Metabolic and Storage Disease Program, Professor of Pediatric Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota	Dr. Orchard's team offers expanded access to OLT-200 in association with Orchard Therapeutics for specific patients. Dr. Orchard has received less than \$5,000 in honoraria or consultancies from Orchard Therapeutics.
Francis Pang, MBA, SVP, Global Market Access & International Geographic Expansion, Orchard Therapeutics	Francis is a full-time employee of Orchard Therapeutics.
Teryn Suhr, R.N., Executive Director, MLD Foundation	The MLD Foundation has received sponsorships from various biopharma companies for their annual family conference. Mrs. Suhr has equity interests such as individual stocks, stock options, or other ownership interests in excess of \$10,000 in Orchard Therapeutics.

CTAF Council Reflections

Next Steps

- Meeting recording posted to ICER website next week
- Final Report published on or around October 30, 2023
 - Includes description of CTAF votes, deliberation, policy roundtable discussion
- Materials available at: <u>https://icer.org/assessment/metachromatic-leukodystrophy-2023/#timeline</u>

© 2023 Institute for Clinical and Economic Review