Imetelstat for Anemia in Myelodysplastic Syndrome: Effectiveness and Value

Public Meeting — July 19, 2024

Meeting materials available at: <u>https://icer.org/assessment/myelodysplastic-syndrome-2024/</u>

© 2024 Institute for Clinical and Economic Review

Patient Experts

Joan Durnell-Powell, MDS Patient Advocate, AA&MDS International Foundation

• No conflicts to disclose.

Daneen Sekoni, MHSA, Vice President, Policy and Advocacy, Cancer Support Community

• The Cancer Support Community has received more than 25% of overall funding from health care companies and has received direct service/policy/psychosocial research support from BMS and Geron Corporation.

Clinical Experts

Timothy Graubert, MD, Director, Hematologic Malignancy Program, Massachusetts General Hospital, Harvard Medical School

• Dr. Graubert has a family member who is a full-time employee of Alexion Pharmaceuticals and has equity in AstraZeneca, Biogen, and Blueprint.

Andreas Klein, MD, Chief, ad interim, Division of Hematology/Oncology and Director, Transplant and Cellular Therapies Program, Tufts Medical Center

• Dr. Klein is employed by an academic medical center physician organization.

ICER Speakers

Sarah K. Emond, MPP President & CEO

Jeffrey A. Tice, MD Evidence Author

Dan Ollendorf, PhD, MPH Senior Management Lead

Steven D. Pearson, MD, MSc *Special Advisor*

Josh Carlson, PhD, MPH Economic Modeler

Why are we here today?

"He started needing transfusions about six months ago when his hemoglobin got below seven...so at first his transfusions were every other week, he'd go two weeks and then it would start falling...he wouldn't be able to do anything...he has no energy....and then it became more and more often. He [caregiver's husband] says, " I have no quality of life, and if this is what my life is going to be, I don't want it anymore."

Caregiver of husband living with MDS

Why Are We Here Today?

- What happens the day these treatments receive FDA approval?
- Questions about:
 - What are the risks and benefits?
 - How do new treatments fit into the evolving landscape?
 - What are reasonable prices and costs to patients, the health system, and the government?
 - What lessons are being learned to guide our actions in the future?

The Impact on Rising Health Care Costs for Everyone

DIAGNOSIS: DEBT

100 Million People in America Are Saddled With Health Care Debt

By Noam N. Levey JUNE 16, 2022

Why Delaware is eying a 27% premium hike on state employees' health insurance

Amanda Fries Delaware News Journal

Published 4:35 a.m. ET Feb. 1, 2024 | Updated 9:29 p.m. ET Feb. 6, 2024

<u>100 Million People in America Are Saddled With Health Care Debt (KFF Health News)</u> Why Delaware is eveing a 27% premium hike on state employees' health insurance (Delaware Online) 8

Organizational Overview

Funding 2024

ICER Policy Summit and non-report activities only

*ICER received significant funding from Arnold Ventures, California Health Care Foundation, & The Commonwealth Fund. Source: 11 https://icer.org/who-we-are/independentfunding/sources-of-funding/

How Was the ICER Report Developed?

Scoping	Evidence Synthesis	Draft Report	Expert Review	Public Comment and Revision	Evidence Report
Guidance from patients, clinical experts, manufacturers, and other stakeholders	Evidence analysical collaboration with the University of California San Francisco and effectiveness modeling in collaboration with the University of Washington	sis in Dane th Policy of Comm cost- Hedw Profes Policy Unive th of Peter Medic Cente	en Sekoni, MHSA and Advocacy, Ca nunity ig Blommestein , ssor, Erasmus Sch & Management, I rsity Rotterdam, th Greenberg, MD, sine, Stanford Univer	A, Vice President, ancer Support PhD, Associate hool of Health Erasmus he Netherland Professor of versity Cancer	Structured to support CTAF voting and policy discussion

Value Assessment Framework: Long-Term Value for Money

Special Social/Ethical Priorities

Benefits Beyond "Health"

Total Cost Overall Including Cost Offsets

Health Benefits: Return of Function, Fewer Side Effects

> Health Benefits: Longer Life

Agenda (PT)

9:00 AM	Meeting Convened and Opening Remarks
9:20 AM	Presentation of the Clinical Evidence
10:00 AM	Presentation of the Economic Model
10:40 AM	Public Comments and Discussion
11:00 AM	Lunch Break
11:50 AM	CTAF Deliberation and Vote
12:50 PM	Break
1:00 PM	Policy Roundtable Discussion
2:30 PM	Reflections from CTAF
3:00 PM	Meeting Adjourned

Presentation of the Clinical Evidence Imetelstat for Anemia in MDS

Jeffrey A. Tice, MD

Professor of Medicine

University of California, San Francisco

© 2024 Institute for Clinical and Economic Review

Key Collaborators

Team Role	Assigned Team Member
Research Lead	Shahariar Mohammed Fahim, PhD
Research Assistant	Belén Herce-Hagiwara, BA

Disclosures

Financial support provided to the University of California San Francisco from the Institute for Clinical and Economic Review (ICER).

Dr. Tice has no conflicts to disclose defined as more than \$10,000 in healthcare company stock or more than \$5,000 in honoraria or consultancies relevant to this report during the previous year from health care manufacturers or insurers.

Myelodysplastic Syndromes (MDS)

Background

- Bone marrow disorders with low circulating blood cells
- Risk for acute myeloid leukemia (AML)
- 60,000 to 170,000 with MDS in the US
- Direct medical costs up to \$220,000 annually

Myelodysplastic Syndromes (MDS)

Background

- Diagnosis typically involves a bone marrow biopsy and molecular genetic testing
- International Prognostic Scoring System (IPSS)
 - Risk for progression to AML

Impact on Patients

- Anemia with its associated symptoms of fatigue and shortness of breath, is a major contributor to poor quality of life.
- Severe, disabling fatigue is the #1 complaint.
- Emotional distress due to uncertainties about prognosis and challenges in understanding the diagnosis.
- Financial stresses: One patient says of his co-pay requirements "We can't afford that."

Standard of Care and Management for Anemia in MDS

- Blood transfusions
 - Development of antibodies: difficult to find matching blood
 - Iron overload requiring chelation
- Erythropoiesis stimulating agents (ESAs)
- Lenalidomide [del(5q)]
- Luspatercept [ring sideroblasts]

Scope of Review

Population

Adults with lower-risk myelodysplastic syndromes without del(5q) mutation who are transfusion-dependent*, receiving best supportive care, and ineligible for or refractory to erythropoiesis-stimulating agents (ESAs)

* Transfusion-dependence defined as 2-4 red blood cell units transfused over 8 weeks

Scope of Review

Intervention

Imetelstat (Rytelo™)

- Oligonucleotide telomerase inhibitor
- FDA approved on June 6, 2024 for transfusion-dependent anemia in lower-risk MDS patients who have not responded to, lost response to, or are ineligible for ESAs
- 7.1 mg/kg IV infusion every four weeks

Comparators

- Placebo / Best supportive care
- Luspatercept

Scope of Review

Key Outcomes

- Transfusion independence for at least 8 weeks (RBC-TI)
- Quality of life
- Fatigue
- Adverse events

Clinical Evidence

Key Clinical Trials: Design

Study	Treatment and Design	Population	Primary Outcome
IMerge	Imetelstat vs. Placebo Phase 3, randomized 2:1, double-blind	 IPSS lower risk MDS Transfusion-dependent (≥4 over 8 weeks) 	RBC-TI ≥ 8 weeks [52 weeks]
MEDALIST	Luspatercept vs. Placebo Phase 3, randomized 2:1, double-blind	 IPSS-R lower risk MDS Transfusion-dependent (≥2 over 8 weeks) Ring sideroblasts 	RBC-TI ≥ 8 weeks [24 weeks]

Key Clinical Trials: Baseline Characteristics

Study	Age years	Female %	Hemoglobin g/dL	Transfusion Burden average units over 8 weeks	Ring Sideroblasts %
IMerge	72	38	7.9	6	62
MEDALIST	71	37	7.6	5	100

IMerge Results

Key Outcomes	Imetelstat N = 118	Placebo N = 60	P-Value
8-week RBC-TI	40%	15%	<0.001
Duration of RBC-TI	52 weeks	13 weeks	<0.001
FACIT-Fatigue improvement*	50%	40%	NR
Progression to AML	2%	3%	NR
Death	30%	25%	NR

* Defined as an increase of at least 3 points for at least 2 consecutive cycles

Primary Outcome for Imetelstat and Luspatercept in the RS+ Population

Study	Arms	Sample Size	Proportion of Patients with 8-week RBC-TI
IMerge 52 weeks	Imetelstat	73	45%
	Placebo	37	19%
MEDALIST 48 weeks	Luspatercept	153	45%
	Placebo	76	16%

Indirect Comparison of Imetelstat and Luspatercept in the RS+ Population: Primary Endpoint of 8-Week Transfusion Independence

Imetelstat		
RR: 0.9 (0.4, 2.3)	Luspatercept	
RR: 2.5 (1.3, 5.7)	2.9 (1.8, 5.4)	Placebo

Limitations of NMA

- Full set of data for imetelstat in RS+ subgroup not available
- Populations may be somewhat different
- Small numbers

Harms

Key Harms	IMerge*		MEDALIST	
	Imetelstat	Placebo	Luspatercept	Placebo
Discontinuation due to AE	16%	0%	8%	8%
Grade 3/4 Adverse Events	91%	48%	42%	45%
Neutropenia	68%	3%	3%	8%
Thrombocytopenia	62%	8%	0%	0%
Anemia	19%	7%	7%	7%

* No excess febrile neutropenia, serious infections or bleeding in the imetelstat group compared with placebo

Controversies and Uncertainties

Key Points

- High incidence of grade 3/4 neutropenia & thrombocytopenia with imetelstat
- Higher incidence of fatigue as an adverse event in imetelstat group than placebo (29% vs. 22%) though greater improvement by FACIT-Fatigue
- Unclear if imetelstat will improve long-term outcomes for patients
- Insufficient data to confidently compare outcomes for imetelstat and luspatercept in the RS+ subgroup

Benefits Beyond Health and Special Ethical Priorities

Key Points

- There is a substantial unmet need for transfusion-dependent patients with MDS.
- If long-term transfusion independence is achieved there would be a substantial improvement in caregiver's quality of life.

Public Comments Received

 The lack of complete data on the comparative effectiveness of imetelstat in the RS+ subgroup severely limits the ability to compare outcomes with luspatercept.

Summary: Imetelstat for Anemia Compared with Best Supportive Care in Lower Risk MDS without del(5q)

Compared with best supportive care, the net benefit of imetelstat is **promising, but inconclusive (P/I).**

- Significant reduction in the need for transfusions
- No significant improvement in fatigue
- Substantially more grade 3 and 4 adverse events including thrombocytopenia, neutropenia, and anemia
- One relatively small clinical trial, so the level of certainty is at best moderate

Summary: Imetelstat for Anemia Compared with Luspatercept in Lower Risk MDS with RS

Compared with luspatercept, we rate the evidence for imetelstat as **insufficient (I).**

- No evidence suggesting reductions in transfusions
- No evidence of improvements in quality of life or fatigue
- Significantly more grade 3 and 4 hematologic adverse events
- The evidence base is indirect and incomplete

Questions?
Presentation of the Economic Evidence

Josh Carlson, PhD, MPH

Professor

University of Washington

Key Review Team Members

Team Role	Assigned Team Member
Modeler(s)	Josh Carlson, PhD, MPH Linda Luu, MSc
Economics Lead	Marina Richardson, PhD, MSc

Disclosures

Financial support provided to the University of Washington from the Institute for Clinical and Economic Review (ICER).

Dr. Carlson has no conflicts to disclose defined as more than \$10,000 in healthcare company stock or more than \$5,000 in honoraria or consultancies relevant to this report during the previous year from health care manufacturers or insurers.

Objective

To evaluate the lifetime cost-effectiveness of imetelstat compared to luspatercept, or best supportive care, for the treatment of anemia in transfusion dependent, lower risk myelodysplastic syndromes adults without the del(5q) mutation who are ineligible or refractory to erythropoiesis stimulating agents

Population

- 1. All Imetelstat Eligible Patients:
 - Comparator: Best Supportive Care
- 2. Ring Sideroblasts (RS) Patients:
 - Comparators: Luspatercept

Methods in Brief

Methods Overview

Model	Markov Model
Setting	United States
Perspective	Health Care Sector Perspective and Modified Societal Perspective
Time Horizon	Lifetime
Discount Rate	3% per year (costs and outcomes)
Cycle Length	4 weeks
Primary Outcome	Cost per quality-adjusted life year (QALY) gained; equal value of life years (evLY) gained

Model Schematic

* Response to treatment defined as achieving transfusion independence for \geq 8 consecutive weeks informed by interim trial results. Response is a one-time movement after the first four-week cycle. A transition back to transfusion dependent from independent represents a loss of response.

Model Characteristics

Baseline Characteristic	Value
Median Age (years)	72
Female (%)	38
Transfusion Burden	
≤ 6 RBC units/8 weeks (%)	53
> 6 RBC units/8 weeks (%)	47
IPSS-Revised	
Very Low (%)	3
Low (%)	80
Intermediate Risk-1 (%)	17

Source: IMerge

Key Assumptions

Assumption 1

Response to treatment is defined as achieving transfusion independence for 8 consecutive weeks or longer.

Assumption 2

Responding patients transition to the transfusion independent state after the first 4week cycle.

Assumption 3

Patients do not move between high and low transfusion burden states.

Key Assumptions

Assumption 4

Patients discontinue treatment if they have no response by 24-weeks, lose response or progress.

Assumption 5

Treatment has no direct effect on disease progression or death.

Assumption 6

Baseline characteristics, adverse event frequencies, and dose intensities are the same in the RS subgroup and the overall population in IMerge.

Treatment-Related Efficacy: All Patients

	Imetelstat (IMerge)	Best Supportive Care (IMerge)
8-week RBC-TI for Low Transfusion Burden (%)	45.2	21.2
8-week RBC-TI for High Transfusion Burden (%)	33.9	7.4
TI Duration (weeks) – Median (95% CI)*	51.6 (26.9 - 83.9)	13.3 (8.0 - 24.9)

* Transition probabilities used in model were obtained from survival models fit to Kaplan Meier curves for transfusion independence

Treatment-Related Efficacy: Ring Sideroblast

	Best Supportive Care (IMerge)	Imetelstat (IMerge)	Luspatercept (MEDALIST)
8-week RBC-TI	19%	RR to BSC: 2.48 (1.3, 5.73)	RR to BSC: 2.92 (1.77, 5.41)
TI Duration (weeks) – Median (95% CI)*	16.9 (8.0 - 24.9)	46.9 (25.9 - 83.9)	30.6 (20.6 - 40.6)

* Transition probabilities used in model were obtained from survival models fit to median durations (IMerge) or Kaplan Meier curves for transfusion independence (MEDALIST)

Key Model Inputs: Treatment Costs

Intervention (Dosage)	Net Price	Net Annual Cost	Source
Imetelstat (7.1mg/kg)	\$27,996	\$365,197	Redbook
Imetelstat (6.1mg/kg)*	\$24,077	\$314,069	Redbook
Luspatercept (1mg/kg) [‡]	\$10,604	\$183,810	Redbook/SSR Health
Luspatercept (1.5mg/kg) ^{†‡}	\$15,906	\$275,715	Redbook/SSR Health

All prices calculated using median body weight of 75kg from IMerge.

* Accounting for dose reductions, applied in model from week 12 onward

+ Average dose accounting for all up-titrations, applied in model from week 12 onward

[‡] 9% discount from SSR Health applied to wholesale acquisition cost from Redbook

Key Model Inputs: MDS-Related Costs

	Cost	Source
HR-MDS Year 1	\$20,529*	Bell et al. 2019
HR-MDS Year 2+	\$15,365 [*]	Bell et al. 2019
AML	\$40,326 [*]	Kota et al. 2023
Myeloid Growth Factors (60 mcg)	\$33	Redbook
Average RBC, each unit	\$946	Cogle et al. 2016
Platelets, each unit	\$778	Cogle et al. 2016
Iron Chelation [†]	\$16,324 [*]	Redbook

* Monthly costs

+ 10% receiving 2000mg deferoxamine mesylate 6 times a week, and 90% receiving 1500mg deferasirox daily. Estimated using lowest cost generic.

Key Model Inputs: MDS-Related Administrative Costs

	Cost	Source
Physician office visit (First 40 minutes)	\$177	CMS Fee Schedule
Physician office visit (Additional 30 minutes)	\$32	CMS Fee Schedule
Subcutaneous injection	\$14	CMS Fee Schedule
IV Administration Cost (First Hour)	\$62	CMS Fee Schedule
IV Administration Cost (Subsequent hours)	\$20	CMS Fee Schedule

Health State Utilities

Health State	Utility	Source
Transfusion Dependent with High Transfusion Burden	0.60	Szende et al. 2009
Transfusion Dependent with Low Transfusion Burden	0.77	Szende et al. 2009
Transfusion Independent	0.84	Szende et al. 2009
High-Risk MDS	0.67	Crespo et al. 2013
AML	0.53	Pan et al. 2010

Grade 3-4 Adverse Events

	Imetelstat (%)	Best Supportive Care (%)	Luspatercept (%)	Treatment Cost	Disutility [†]
Thrombocytopenia	62	8	0	\$9,974 ¹	0.25 ²
Neutropenia	68	3	3.3	\$6,423 ¹	0.35 ²
Anemia	19	7	6.5	\$5,759 ¹	0.073 ³
Leukopenia	8	0	0*	\$4,541 ¹	0.24

¹ CMS MS-DRG, ² Nafees et al. 2017, ³ Liu et al. 2021, ⁴ Rui et al. 2022

* Not available, assumed to be 0. MEDALIST reported serious adverse events with \geq 2% incidence.

[†] Disutility expected to last 2 weeks

Results

Base-Case Results – All Patients

Drug	Intervention Cost	Total Cost	Total RBC Units Transfused	QALYs	evLYs
Imetelstat + BSC	\$1,030,000	\$1,150,000	149	2.83	2.86
Best Supportive Care	\$846,000	\$951,000	159	2.67	2.67
Incremental Results*	\$184,000	\$199,000	(10)	0.17	0.19

Drug	Comparator	Cost per QALY gained	Cost per evLY gained
Imetelstat + BSC	Best Supportive Care	\$1,197,000	\$1,029,000

* Any discrepancies in incremental results are due to rounding

Base-Case Results – Ring Sideroblast

Drug	Intervention Cost	Tota	al Cost	Total RBC Units Transfused	QALYs	evLYs [†]	
Imetelstat + BSC	\$1,024,000	\$	51,144,000	150	2.84	2.87	
Luspatercept + BSC	\$964,000	\$	1,073,000	150	2.86	2.88	
Incremental Results*	\$60,000		\$71,000	0	(0.02)	(0.01)	
Drug	Comparator		Cost per QALY gained		Cost per evLY gained		
Imetelstat + BSC	Luspatercept + BS	atercept + BSC		More costly, less effective		More costly, less effective	

* Any discrepancies in incremental results are due to rounding + evLYs were calculated relative to best supportive care

One Way Sensitivity Analyses for Imetelstat versus BSC (All Patients)

Imetelstat + BSC was cost-effective in 0% of 1000 PSA simulations at the common price thresholds: \$50,000, \$100,000, \$150,000, \$200,000 per QALY or evLY gained.

TI: Transfusion Independent, TD: Transfusion Dependent, mg: Milligram, LTB: Low Transfusion Burden, HTB: High Transfusion Burden, BSC: Best Supportive Care, IPSS-R: Revised International Prognostic Scoring System

Scenario Analyses – All Patients

Incremental Cost-Effectiveness Ratio (\$/QALY)

Treatment vs Comparator	Base Case Result	Scenario 1: Modified Societal Perspective	Scenario 2: 16-Week Transfusion Independen ce	Scenario 3: Minor HI-E Response [*]	Scenario 4: No Indirect Mortality Effect
Imetelstat + BSC vs BSC alone	\$1,197,000	\$1,151,000	\$1,466,000	\$1,135,000	\$3,784,000

* Minor HI-E response is a 50% reduction in red blood cell units over 16-weeks, transitioning individuals without a major response from high to low transfusion burden.

Health Benefit Price Benchmarks (HBPBs)

Annual Price Benchmarks for Imetelstat in the All Patients Population

Annual Prices Using	Annual WAC	Annual Price at \$100,000 Threshold	Annual Price at \$150,000 Threshold	Discount from WAC to Reach Threshold Prices
QALYs Gained	ФЭС <u>Б</u> 407	\$94,800	\$107,000	70.7% - 74.0%
evLYs Gained	Φ30 5, 197	\$98,900	\$113,000	69.1% - 72.9%

Unmet Need

Condition	Absolute evLY Shortfall	Proportional evLY Shortfall			
MDS-Induced Anemia	8.72	74.3%			
Other Example Conditions					
Alzheimer's Disease	9.37	71.3%			
Multiple Sclerosis	18.86	51.7%			
Osteoporosis	2.61	18.7%			

Limitations

Top Limitations

- Limited amount of publicly available data:
 - Unable to inform transitions between high and low transfusion burdens in our base case
 - Assumed ring sideroblast subgroup adverse events, dose reductions, and baseline characteristics were equivalent to the overall population
- Utility estimates from Szende et al. were obtained from surveys that described transfusion states broadly and included a variety of other health issues.

Comments Received

- Lack of movement between high and low transfusion burden health states
- Cost differences between the different lower-risk MDS health states (low transfusion burden, high transfusion burden, transfusion independent)
- Update the placeholder cost for Imetelstat with the available wholesale acquisition cost

Conclusions

- Imetelstat provides small gains in QALYs and evLYs, and a reduction in the total number of RBC units transfused compared to best supportive care through a patient's lifetime.
- At the current wholesale acquisition cost, imetelstat would not meet commonly cited cost-effectiveness thresholds.
- When compared to luspatercept in the ring sideroblast population, imetelstat was more costly and less effective.

Questions?

Manufacturer Public Comment and Discussion

Faye Feller, MD Chief Medical Officer, Geron

Conflicts of Interest:

• Dr. Feller is a full-time employee at Geron.

Public Comment and Discussion

Rochelle Mackey, MA, APRN, QTTT Caregiver

No conflicts to disclose.

Ashley Moncrief, Director of Patient Care, MDS Foundation

No conflicts to disclose.

Lunch

Meeting will resume at 11:50AM PT

© 2024 Institute for Clinical and Economic Review

Voting Questions

Clinical Evidence
Patient Population: Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs.

1. Is the current evidence adequate to demonstrate that the net health benefit of imetelstat plus best supportive care is superior to that provided by best supportive care alone?

Patient Population: Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs, and are ring sideroblast positive.

2. Is the current evidence adequate to demonstrate that the net health benefit of imetelstat plus best supportive care is superior to that provided by luspatercept plus best supportive care?

Benefits Beyond Health and Special Ethical Priorities

Patient Population: Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs.

To help inform judgments of overall long-term value for money, please indicate your level of agreement with the following statements:

3. There is substantial unmet need despite currently available treatments.

4. This condition is of substantial relevance for people from a racial/ethnic group that have not been equitably served by the healthcare system.

To help inform judgments of overall long-term value for money, please indicate your level of agreement with the following statements based on the relative effects of imetelstat plus best supportive care versus best supportive care alone: **Patient Population:** Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs.

5. The treatment is likely to produce substantial improvement in caregivers' quality of life and/or ability to pursue their own education, work, and family life.

6. The treatment offers a substantial opportunity to improve access to effective treatment by means of its mechanism of action or method of delivery.

To help inform judgments of overall long-term value for money, please indicate your level of agreement with the following statements based on the relative effects of <u>imetelstat plus best</u> <u>supportive care</u> versus <u>luspatercept plus best</u> <u>supportive care</u>: **Patient Population:** Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs, and are ring sideroblast positive.

7. The treatment is likely to produce substantial improvement in caregivers' quality of life and/or ability to pursue their own education, work, and family life.

8. The treatment offers a substantial opportunity to improve access to effective treatment by means of its mechanism of action or method of delivery.

Long-Term Value for Money

Patient Population: Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs.

9. What is the long-term value for money of imetelstat plus best supportive care compared to best supportive care alone at current pricing?

Patient Population: Patients with lower risk myelodysplastic syndrome without the del(5q) mutation who are transfusion dependent* and ineligible for, or refractory to ESAs, and are ring sideroblast positive.

10. What is the long-term value for money of imetelstat plus best supportive care compared to luspatercept plus best supportive care at current pricing?

Break

Meeting will resume at 1:00PM PT

© 2024 Institute for Clinical and Economic Review

Policy Roundtable

Policy Roundtable

Participant	Conflict of Interest
Joan Durnell-Powell, MDS Patient Advocate, AA&MDS International Foundation	No conflicts to disclose.
Leslie Fish, PharmD, SVP Pharmacy, IPD Analytics	Dr. Fish is a full-time employee at IPD Analytics.
Timothy Graubert, MD , Director, Hematologic Malignancy Program, Massachusetts General Hospital, Harvard Medical School	Dr. Graubert has a family member who is a full-time employee of Alexion Pharmaceuticals and has equity in AstraZeneca, Biogen, and Blueprint.
Andreas Klein, MD, Chief, ad interim, Division of Hematology/Oncology and Director, Transplant and Cellular Therapies Program, Tufts Medical Center	Dr. Klein is employed by an academic medical center physician organization.
Daneen Sekoni, MHSA , Vice President, Policy and Advocacy, Cancer Support Community	The Cancer Support Community has received more than 25% of overall funding from health care companies and has received direct service/policy/psychosocial research support from BMS and Geron.
Emily Tsiao, PharmD, BCPS, Medical Policies Clinical Pharmacist, Premera Blue Cross	Dr. Tsiao is a full-time employee at Premera Blue Cross.
© 2024 Institute for Clinical and Economic Review	98

CTAF Council Reflections

Next Steps

- Meeting recording posted to ICER website next week
- Final Report published on or around August 22nd, 2024
- Includes description of CTAF votes, deliberation, policy roundtable discussion
- Materials available at: <u>https://icer.org/assessment/myelodysplastic-</u> <u>syndrome-2024/</u>

© 2024 Institute for Clinical and Economic Review